
NASA Contractor Report 181874

1 .

Advanced Information Processing System:
Input/Output System Services

Tom Masotto
Linda Alger

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565
August 1989

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

Title Page

LIST OF ILLUSTRATIONS .. v

1.0 INTRODUCTION .. 1
1.1 AIPS Architecture ... 1

1.1.1 AIPS Networks ... 4
1.2 AIPS System Software ... 5

1.2.1 AIPS Software Design Approach ... 5
AIPS System Software Overview .. 5
1.2.2.1 Local System Services .. 8
1.2.2.2 Inter-Computer System Services 10
1.2.2.3 System Manager ... 10
1.2.2.4 1/0 System Services ... 11

1.2.2

2.0 I/O USER INTERFACE ... 15
I/O User Interface Functional Description .. 15
2.1.1 VO Request Construction .. 16
2.1.2 1/0 Data Access Operations .. 17
2.1.3 VO Request Scheduling .. 19

2.2 YO User Interface Software Specifications .. 20
2.2.1 VO Request Construction i 20

2.2.1.1 Creation of a Transaction ... 20
2.2.1.2 Creation of a Chain .. 23
2.2.1.3 Creation of an VO Request ... 24

2.2.2 1/0 Data Access Operations .. 27
2.2.2.1 VO User Interface Write Procedures 27
2.2.2.2 1/0 User Interface Read Procedures 29
2.2.2.3 User Interface Selection and Deselection Procedures 31
2.2.2.4 VO User Interface Error Checking Procedures 33
2.2.2.5 1/0 User Interface Overrun Check 34

2.2.3 VO Request Scheduling .. 35
2.2.3.1 Synchronization Using Flags 35
2.2.3.2 Synchronization Using Events 36

2.3 I/O User Interface Software Process Descriptions 38
2.3.1 VO System Services VO Request Specification 38
2.3.2 VO System Services Application Log .. 56

2.4 I/O User Interface Data Dictionary ... 58

2.1

3.0 VO COMMUNICATIONS MANAGEMENT ... 61

3.1.1 1/0 Traffic Control .. 61
3.1.1.1 Queue Management ... 62
3.1.1.2 I/O Request Execution .. 63
3.1.1.3 I/O Request Completion .. 65

3.1.2 1/0 Low Level Utilities ... 65

3.2.1 VO Traffic Manager .. 66
3.2.1.1 Queue Management ... 66
3.2.1.2 VO Request Execution .. 68
3.2.1.3 VO Request Completion .. 71

3.1 VO Communications Management Functional Description 61

3.2 The VO Communications Management Software Specifications 66

...
PRECEDING PAGE BLANK NOT FILMED

...
lll

3.2.2 I/O Low Level Utilities ... 72
3.3 I/O Communications Management Software Process Descriptions 73

3.3.1 I/O System Services Queue Manager ... 74
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8 I/O System Services Shared Memory Allocation 111
3.3.9

3.4 I/O Communications Management Data Dictionary 122

I/O System Services IOP Construct VO Requests 90
VO System Services Main Initialization 97
I/O System Services Communication of Specifications Task 98
I/O System Services Posting Tasks ... 100
I/O System Services IOP Powerup .. 102
I/O System Services Global Memory Utilities 107

I/O SystemServicesDualPo~Memory Map 118
3.3.10 I/O System Services Private ID Types 120

4.0 I/O SYSTEM SERVICES USER EXAMPLE .. 129
4.1 Overview .. 129
4.2 Construction of an VO Network Topology ... -131
4.3 Creation of an I/O Request : ... 134
4.4 Creation of an Application Task .. 139
4.5 Passing Control to an Application Task .. 142

5.0 CONCLUSIONS AND RECOMMENDATIONS 145
5.1 Testing of the I/O System Services ... 145
5.2 Performance Memcs .. 146
5.3 Future Work ... 148

6.0 REFERENCES ... 151

APPENDIX A GLOSSARY OF I/O NETWORK TERMS A-1

APPENDIX B

APPENDIX C I/O SEQUENCER ... C-1

I/O SERVICE OPERATING RULES B-1

iv

8 .

LEX OF ILLUSTRATIONS

Tme page
1 .
2 .
3

4

5 .
6 .
7 .
8 .
9 .
10 .

11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .

AIPS Distributed Configuration .. 3

AIPS System Design Approach .. 6

Centralized AIPS Configuration .. 7

Top Level View of System Services .. -8

Inter-Computer System Services ... 11

I/O System Services ... 13

Local System Services ... 9

System Manager .. 12

Interprocessor Synchronization for Communication of YO Request Specifications . 23

Data Structure . . used for YO Request Construction and Interprocessor
Communication ... 25

Control Flow for VO Request Execution and Completion -69

I/O System Services Network Data Types Package 129

I/O System Services Central Database Package ... 130

I/O Request Package .. 130

CP Main Initialization Package .. 131

40 Request Processing Times for the Sample Application 145

40 Request Processing Times for the Sample Application (Continued) 146

Application Tasks Package ... 130

I/O System Services Timings for the Sample Application 147

V

1.0 INTRODUCI'ION

This purpose of this report is to document the functional requirements and detailed
specifications for the UO System Services of the Advanced Information Processing System
(AIPS). This introductory section is provided to outline the overall architecture and
functional requirements of the AIPS system. Section 1.1 gives a brief overview of the
AIPS architecture as well as a detailed description of the AIPS fault tolerant network
architecture, while Section 1.2 provides an introduction to the AIPS system software.
Sections 2 and 3 describe the functional requirements and design and detailed specifications
of the VO User Interface and Communications Management modules of the VO System
Services, respectively. Section 4 illustrates the use of the UO System Services, while
Section 5 concludes with a summary of results and suggestions for future work in this
area.

The Advanced Information Processing System is designed to provide a fault- and damage-
tolerant data processing architecture which can serve as the core avionics system for a
broad range of aerospace vehicles being researched and developed by NASA. These
vehicles include manned and unmanned space vehicles and platforms, deep space probes,
commercial transports, and tactical military aircraft.

AIPS is a multicomputer architecture composed of hardware and software 'building blocks'
that can be configured to meet a broad range of application requirements. The hardware
building blocks are fault-tolerant, general purpose computers (GPCs), fault- and damage-
tolerant inter-computer and input/output networks, and interfaces between the networks and
the general purpose computers. The software building blocks are the major software
functions: local system services, inputloutput system services, inter-computer system
services and the system manager. This software provides the services necessary in a
traditional real-time computer such as task scheduling and dispatching, communication with
sensors and actuators, etc. The software also supplies the redundancy management
services necessary in a redundant computer and the services necessary in a distributed
system such as inter-function communication across processing sites, management of
distributed redundancy, management of networks, and migration of functions between
processing sites.

The AIPS hardware consists of a number of computers located at processing sites which
may be physically dispersed throughout a vehicle. These processing sites are linked
together by a reliable, damage-tolerant data communication pathway called the Inter-
Computer (IC) bus. Since the hardware implementation of this "virtual bus" is a circuit-
switched network, but from the GPC communication and protocol viewpoint it appears as a
conventional bus, the terms "bus" and "network" an used interchangeable throughout this
document. A computer at any particular processing site may also have access to varying

1

numbers and types of InpudOutput (UO) buses, which are separate from the IC bus. The
UO buses may be global, regional or local in nature. VO devices on the global VO bus are
available to all, or at least a majority, of the AIPS computers. Regional buses connect VO
devices in a given region to the processing sites located in their vicinity. Local buses
COMW a computer to the VO devices dedicated to that computer. Additionally, UO devices
may be connected directly to the internal bus of a processor and accessed as though the VO
devices reside in the computer memory (memory mapped YO). Both the VO buses and the
IC bus are timedivision multiple-access contention buses. Figure 1 shows the laboratory
engineering model for a distributed AIPS configuration. This distributed AIPS
configuration includes all the hardware and software building blocks mentioned earlier and
was conceived to demonstrate the feasibility of the AIPS architecture.

The laboratory configuration of the distributed AIPS system shown in Figure 1 consists of
four processing sites. Each processing site has a General Purpose Computer (GPC).
GPCs may be simplex or they may be FTPs of varying redundancy levels. Of the four
FTPs in the laboratory configuration, one is simplex, one is duplex, and two are triplex
processors. An FTP may also be quadruply redundant but none was fabricated for the
AIPS laboratory demonstration. The redundant FTPs are built such that they can be
physically dispersed for damage tolerance; each of the redundant channels of an FIT can be
as far as 5 meters from other channels of the same FI'P.

The GPCs are interconnected by a triplex circuit-switched network. Each network layer
forms a full two way 'virtual bus'. The three layers are totally independent and are not
cross-strapped to each other. Each layer contains a circuit-switched node for each
processing site; thus every processing site is serviced by three nodes of the IC network.
GPCs are designed to receive data on all three layers, but the capability of a GPC to
transmit on the network depends on the GPC redundancy level. Triplex FTPs can transmit
on all three layers, duplex FTPs on only two of the three layers, and simplex processors on
only a single layer. In duplex and triplex FI'Ps, a given processor can transmit on only one
network layer. Thus malicious behavior of a processor can disrupt only one layer.

The IC network and the GPC interfaces into the network are designed in strict accordance
with fault-tolerant systems theory. Thus an arbitrary random hardware fault, including
Byzantine faults, anywhere in the system can not disrupt communication between triplex
FTPs. In other words, the triplex IC network, in conjunction with the GPC interfaces into
the network, provides error-masking capability for communication between two triplex
computers.

The laboratory demonstration of the YO network is implemented using a 15-node circuit-
switched network that interfaces with each of the GPCs on 1 to 6 nodes, depending on the
GPC redundancy level. The 15 VO nodes can be configured in the laboratory as global,
regional, and local 1/0 networks to demonstrate various dimensions of the AIPS VO.
concept.

2

E
Q)

v)
c,

v)
v)

0

E
0
YI

r

E m
0
0
U m
2
m
P) c
0) a c
a c
w

.-
L

.-

p

Figure 1. AIPS Distributed Configuration

3

1.1.1 AIPS Networks

For communication between GPCs and between a GPC and UO devices, a damage and
fault tolerant network is employed. The network consists of a number of full duplex links
that are interconnected by circuit switched nodes. In steady state, the circuit switched
nodes route information along a fixed communication path, or 'virtual bus', within the
network, without the delays which are associated with packet switched networks. Once the
virtual bus is set up within the network the protocols and operation of the network are
similar to typical multiplex buses. Every transmission by any subscriber on a node is heard
by all the subscribers on all the nodes just as if they were all linked together by a linear bus.
Although the network performs exactly as a bus, it is far more reliable and damage tolerant
than a linear bus. A single fault or limited damage can disable only a small fraction of the
virtual bus, typically a node or a link connecting two nodes. Such an event does not
disable the network, as would be the case for a linear bus. The network is able to tolerate
such faults due to the richness of interconnections between nodes. By reconfiguring the
network around the faulty element, a new virtual bus is constructed. Except for such
reconfigurations, the structure of the virtual bus remains static.

The nodes are sufficiently intelligent to recognize reconfiguration commands from the
network manager, which is resident in one of the GPCs. The network manager performs
the necessary diagnostics to identify the failed element and can change the bus topology by
sending appropriate reconfiguration commands to the affected nodes.

Damage caused by weapons or electrical shorts, overheating, or localized fire would affect
only subscribers in the damaged portion of the vehicle. The rest of the network, and the
subscribers on it, can continue to operate normally. If the sensors and effectors are
themselves physically dispersed for damage tolerance, and the damage event does not affect
the inherent capability of the vehicle to continue to fly, then the digital system would
continue to function in a normal manner or in some degraded mode as determined by
sensor/effector availability.

Fault isolation is much easier in the network than in multiplex buses. For example, a
remote terminal transmitting out of turn, a rather common failure mode which will totally
disable a linear bus, can be easily isolated in the network through a systematic search where
one terminal is disabled at a time. Furthermore, for networks of moderate size, up to 50
nodes, most faults can be detected, isolated and the network reconfigured in milliseconds.

The network can be expanded very easily by linking the additional nodes to the spare ports
in existing nodes. In fact, nodes and subscribers to the new nodes (YO devices or GPCs)
can even be added without shutting down the existing network. In bus systems, power to
buses must be turned off before new subscribers or remote terminals can be added.

Finally, there are no topological constraints, as are encountered with linear or ring buses.

4

In fact, these are simply subsets of the fault-tolerant network architecture.

1.2 AlPSSystemSoftware

The AIPS system software, as well as the hardware, has been designed to provide a virtual
machine architecture that hides hardware redundancy, hardware faults, multiplicity of
resources, and distributed system characteristics from the applications programmer.
Section 1.2.1 discusses the approach used for the AIPS system software design. Section
1.2.2 is a high level description of the system services that are provided for AIPS users.

1.2.1 AIPS S o b e Design Approach

The approach used to design the AIPS system software is part of the overall AIPS system
design methodology. An abbreviated form of this system design methodology is shown in
Figure 2. This methodology began with the application requirements and eventually led to
a set of architectural specifications. The architecture was then partitioned into hardware and
software functional requirements. This report documents the design approach used for 1/0
System Services software, beginning with the functional requirements and proceeding
through detailed specifications.

Hardware and software for the AIPS architecture is being designed and implemented in two
phases. The first phase is the centralized AIPS configuration. The centralized AIPS
architecture, as shown in Figure 3, is configured as one triplex Fault Tolerant Processor
(FTP), an InpuVOutput network and the interfaces between the FTP and the network,
referred to as input/output sequencers (10s). The laboratory demonstration of the
input/output network consists of 15 circuit-switched nodes which can be configured as
multiple local VO networks connected to the triplex GPC. For example, the VO network
may be configured as one 15-node network, as shown in Figure 3, or as three 5-node
networks. The software building blocks that have been designed and implemented for the
AIPS centralized architecture include local system services and VO system services. The
following subsection 1.2.2 gives an overview of all the AIPS software building blocks.
The rest of this document, Sections 2 through 4, focuses on the functional design and
detailed specification of the VO System Services.

1.2.2 AlPS System Sohare Overview

As shown in Figure 4, AIPS system software provides the following AIPS System
Services: local system services, communication services, system management, and VO
system services. The system software is being developed in Ada. System services are
modular and partitioned naturally according to hardware building blocks. The distributed
AIPS configuration includes all the services. Versions of the system software for specific
applications can be created by deleting unused services from this superset. The System
Manager functions reside on only one GPC, but all functions of the System Manager are

5

r7 Application
Requirements

 specification^

Functional

System Software
Specifications

Syatom Hardware
Specifications

Figure 2. AIPS System Design Approach

not necessarily on the same GPC. The other system services are replicated in each GPC.
The following is a brief description of each of the services.

6

15-NODE I/O NETWORK

DIU

0 - -
DIU
c6

Node
Active
Spare

TRIPLEX FTP

Link
Link

Device Interface Unit
GPC/Network Interface (I/O Sequencer)

figure 3. Centralized AIPS Configuration

7

Figure 4. Top Level View Of System Services

1.2.2.1 Local System Services

The local system services provided in each GPC are: GPC initialization, real-time operating
system, local resource allocation, local GPC Fault Detection, Isolation, and
Reconfiguration (FDIR), GPC status reporting, and local time management (see Figure 5).

The function of GPC initialization is to bring the GPC to a known and operational state
from an unknown condition (cold start). Each channel of a GPC has two processors: a
computational processor (CP) and an inpudoutput processor (IOP). GPC initialization
synchronizes the CPs with each other, synchronizes the IOPs with each other, and resets or
initializes the GPC hardware and interfaces (interval timers, real time clock, interface
sequencers, DUART, etc.) It makes the hardware state of the redundant channels
congruent by alignment of memory and control registers. It then activates the system
baseline software that is common to every GPC.

The AIPS real-time operating system supports task execution management, including
scheduling according to priority, time and event occurrence, and is responsible for task
dispatching, suspension and termination. It also supports memory management, software
exception handling, and intertask communication between companion processors (IOP and
CP). The AIPS operating system resides on every CP and IOP in the system. It uses the
vendor-supplied Ada Run Time System (RTS), and includes additional features required
for the AIPS real-time distributed operating system.

8

m
SYNC

GPC ' LOCAL
~ N F K ; ICSTATUS

1
&AL LOCAL

+ + SYSTEM STATUS TIME STATUS

Figure 5. Local System Services

The GPC resource allocator coordinates and determines responsibility for any global or
migratable functions from the system resource manager. It also monitors commands from
the system resource manager to start or stop any function.

The GPC status reporter collects status information from the local functions, the local GPC
FDIR, the IC system services and the UO system services. It updates its local data base
and disseminates this status information to the system manager.

GPC FDIR has the responsibility for detecting and isolating hardware faults in the CPs,
IOPs, and shared hardware. It is responsible for synchronizing both groups of processors
in the redundant channels of the FTP and for disabling outputs of failed channel(s) through
interlock hardware. After synchronization, all CPs will be executing the same machine
language instruction within a bounded skew, and all IOPs will be executing the same
machine language instruction within a bounded skew. GPC FDIR logs all faults and
reports status to the GPC status reporter. It is responsible for the CPU hardware exception
handling and downmoding/upmoding hardware in response to configuration commands
from the system manager. It is also responsible for transient hardware fault detection and
for running low priority self tests to detect latent faults. This redundancy management
function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to keep the
local real time initialized and consistent with the universal time. It is also responsible for .

9

providing time services to all users. A detailed description of the Local System Services in
provided in [11.

1.2.2.2 Inter-Computer System Services

The inter-computer system services provide two functions: (1) inter-computer user
communication services, that is, communication between functions not located in the same
GPC, and (2) inter-computer network management (Figure 6).

The IC user communication service provides local and distributed inter-func tion
communication which is transparent to the application user. It provides synchronous and
asynchronous communication, performs error detection and source congruency on inputs,
and records and reports IC communication errors to IC network managers. Inter-computer
communication can be done in either point to point or broadcast mode and is implemented
in each GPC.

The IC network manager is responsible for the fault detection, isolation and reconfiguration
of the network. The AIPS distributed configuration consists of three identical, independent
IC network layers which operate in parallel to dynamically mask faults in a single layer and
provide reliable communication. There is one network manager for each network layer.
However, the three network layer managers do not need to reside in the same GPC. They
are responsible for detecting and isolating hardware faults in IC nodes and links and for
reconfiguring their respective network layer around any failed elements. The network
manager function is transparent to all application users of the network.

1.2.2.3 System Manager

The system manager is a collection of system level services including the applications
monitor, the system resource manager, the system fault detection, isolation and
reconfiguration (FDIR), and the system time manager (Figure 7).

The applications monitor interfaces with the applications programs and the A P S system
operator. It accepts commands to migrate functions from one GPC to another, to display
system status, to change the state of the system by requesting a hardware element state
change, and to convey requests for desired hardware and software configurations to the
system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the
monitoring of the various triggers for function migration such as failure or repair of
hardware components, mission phase or workload change, operator or crew requests and

10

REAIu)<= Fu"
FLAG ALLOCATION

ICmoRK m COMMAND GPC STATUS

LOCAL IC STATUS

Figure 6. Inter-Computer System Services

timed events. It reallocates functions in response to any of these events. It also designates
managers for shared resources and sets up the task location data base in each GPC.

The system fault detection, isolation and reconfiguration (FDIR) is responsible for the
collection of status from the inter-computer (IC) network managers, the I/O network
managers, and the local GPC redundancy managers. It resolves conflicting local fault
isolation decisions, isolates unresolved faults, correlates transient faults, and handles
processing site failures.

The system time manager, in conjunction with the local time manager on each GPC, has the
job of maintaining a consistent time across all GPCs. The system time manager indicates to
the local time manager when to set its value of time. It also sends a periodic signal to
enable the local time manager to adjust its time to maintain consistency with an external time
source such as the GPS Satellites or an internal source such as the real time clock in the
GPC which hosts the system time manager software.

1.2.2.4 I/O System Services

The UO system services provide efficient and reliable communication between the user and
external devices (sensors and actuators). The I/O system services software is also
responsible for the fault detection, isolation and reconfiguration of the I/O network
hardware and GPC/network interface hardware (inpudoutput sequencers).

I/O system services is made up of three functional modules: I/O user interface, I/O
communication management and the UO network manager (Figure 8).

The I/O user interface provides a user with read/write access to VO devices or device
interface units (DIUs), such that the devices appear to be memory mapped. It also gives the

11

Figure 7. System Manager

user the ability to group VO transactions into chains and I/O requests, and to schedule VO
requests either as periodic tasks or on demand tasks.

The VO communication manager provides the functions necessary to control the flow of
data between a GPC and the various I/O networks used by the GPC. It also performs
source congruency and error detection on inputs, voting on all outputs, and reports
communication errors to the I/O network manager. It is also responsible for the
management of the VO request queues.

The VO network manager is responsible for detecting and isolating hardware faults in VO
nodes, links, and interfaces and for reconfiguring the network around any failed elements.
The network manager function is transparent to all application users of the network.

The I/O user interface, I/O communications management, and VO redundancy management
modules are dependent processes, as illustrated in Figure 8. The VO communication
management process uses the database of VO request specifications (VO request database)
that is constructed by the I/O user interface. In addition, the I/O user interface and
communications management modules interact when communicating the 1/0 data,

12

Figure 8. I/O System Services

synchronizing the CP and IOP tasks, and processing of the IlO requests. The 1/0
communications management process interacts with the VO redundancy management
module for the communication of network status, diagnostic information, and FDIR
commands. Furthermore, the communication management and redundancy management
modules both use the VO database and VO low level utilities.

Sections 2 and 3 describe the functional requirements and design and detailed specifications
of the UO User Interface and VO Communications Manager, respectively. The software
requirements and specifications for the UO Network Manager are described in [2]. Section
4 illustrates the use of the VO .System Services for the applications programmer, and
Section 5 concludes with a summary of results.

13

2.0 YO USER INTERFACE

The VO User Interface provides a user with access to VO devices or device interface units
@IUS). It provides this access to the DIUs in such a way that to the applications user they
appear to be memory mapped. That is, each DIU with which the FTP interfaces can be
simply addressed by means of redwrite routines that simulate memory mapped YO to the
user. It also provides the user with the option of either single or chained transactions on an
VO network (a transaction is an HDLC frame sent to a single DIU using the HDLC
protocol; a chain or chained transactions is an ordered set of one or more transactions
addressed to devices on one VO network). The use of chained transactions allows very
efficient use of the network bandwidth. Redundant chains can be executed in a (nearly)
simultaneous fashion on redundant VO networks to provide data to and from redundant
devices with a bounded time skew. VO activity may be scheduled to run periodically or on
demand. The VO User Interface provides the means to form VO requests from single or
chained transactions and to schedule VO requests (an VO request is a set of one or more
single or chained VO transactions, each of which executes on a different I/O network).
These VO request specifications result in CP/IOP shared memory assignments for data and
error information for each DIU transaction. In addition, the VO User Interface provides
system calls for safely accessing those memory mapped locations. Although DIUs are
connected to a fault tolerant network, all network access protocols, source congruency and
error processing on inputs, and fault masking on outputs are transparent to the user.

The description of the VO User Interface is divided into three sections: functional
description, software specifications, and software process descriptions.

21 I/O User Interface Functional Description

The VO User Interface is divided into three functions: VO Request Construction, 40 Data
Access Operations, and VO Request Scheduling.

I/O USER
INTERFACE

I 1 1 . m m

I/O REQUEST I/O DATA ACCESS I/O REQUEST
CONSTRUCTION OPERATIONS SCHEDULING

The VO Request Construction function allows the user to create VO transactions, specify
how they will be grouped and how each I/O request will be scheduled. The I/O Data
Access Operations provide the read/write routines that allow the user to access VO chain

15
PRECEDING PAGE BLANK NOT FILMED

data in shared memory,-while hiding the CP/IOP protocol from the user. The VO Request
Scheduling provides the user with the flexibility to schedule each UO request as a cyclic
free running task that runs and signals the caller when each cycle has completed or an on-
demand task that is only scheduled when requested.

2.1.1 VO Request Construction

The applications user can construct transactions, chains, and UO q u e s t s in an hierarchical
manner. Initially, the parameters associated with each transaction must be specified.
Secondly, the transactions that are sequentially executed as a unit on one network are
grouped to form an VO chain. Finally, the chains are grouped into UO requests to fully
maximize the bandwidth of the communications network by allowing the simultaneous
execution of chains on the parallel networks of an VO service. The applications user can
construct one or more VO requests for each VO service (an UO service is a logical
organization imposed on I/O network use) as dictated by the requirements of the
application.

The VO User Interface requires several parameters to be specified in order to create an UO
transaction. The user has to specify whether the transaction will request information from
or send a command to a DIU (input and output transaction respectively). In either case, the
DIU must be specified. In addition, the user must provide the number of data bytes to be
sent to the DIU (all transactions) and the number of data bytes that will be returned by the
DIU (all input transactions). Accordingly, the location(s) of the appropriate data buffer(s)
on the CP must be specified in order to readwrite the data associated with the DIU. The
user must also specify whether the output data is dynamic or static. If the data is dynamic,
then it is copied into the 10s prior to each execution of the associated chain. If the data is
static, then it is copied into the 10s only once. For input transactions, the user must
specify the maximum number of errors that are tolerable before the transaction is bypassed
(deselected by the VO System Services) and the transaction time-out which is the maximum
time that can expire before a byte of data is received from the DIU. The VO User Interface
constructs a record using this information and returns a transaction identifier (ID) to allow
the user to later identify the transaction.

After the transactions are specified and created, they are grouped to form chains. Chains
allow efficient use of the communications bandwidth, but are only applicable to a single
network. Accordingly, the user must specify the transactions that will form the chain, and
the network on which they will be executed. The VO User Interface records the chain
information and returns a chain identifier to the user.

After the chains are specified and created, they are grouped into 40 requests. An VO
request is a set of one or more chains each of which simultaneously executes on a parallel
network of an VO service. The creation of the VO request requires the user to specify the
chains that will form the request. In addition, the user must provide the YO request time

16

out which is the maximum length of time that the VO request requires the VO network (used
for UO request execution and processing). Furthermore, the desired scheduling
requirements must be provided. This scheduling information specifies if the VO request is
periodic or on demand, the priority of the request, and the frequency with which VO
request uses an event to signify its completion. If the I/O request is periodic, the
scheduling requirements also specify the repetition period, how it is started (after-delay,
on-event, or at-absolute-time), and how it will stop (never-stop or stop-on-event). The
VO User Interface records the I/O request information and returns an I/O request identifier
to the user.

In order to make the redundancy management, source congruency, multiprocessing
(CP/IOP) communications protocol, and fault masking transparent to the user, the VO
specifications (transaction, chain, and VO request) must be communicated through shared
memory to the IOP. The IOP uses the information to construct a set of companion records.
The companion records are transaction, chain, or VO request specification records that are
the IOP duals of CP transaction, chain, or UO request records. The companion records are
used when processing the VO requests. A CP/IOP handshaking protocol is incorporated to
insure that the VO request specifications and associated data are not corrupted during their
transmission through shared memory.

2.U I/O Data Access Operations

The ID Data Access Operations provide redwrite routines that allow the user to access UO
data in shared memory that appears to the user to be memory mapped. The redundancy
management of the fault-tolerant network, network access protocols, source congruency
and error processing on the inputs, fault masking on the outputs, and CP/IOP
communications protocol are transparent to the user. The applications user is able to write
commands to and request information from the DIUs. In addition, select and deselect
system calls are available allowing the user to add and remove transactions from their
corresponding chains (enabling error recovery and dynamic UO request reconfiguration).
The VO Data Access routines also allow the user to determine whether or not errors
occurred in the UO requests and to isolate the location of the error(s) if one (or more)
resulted.

The user can send control data to the DIUs using the UO User Interface write procedures.
Command information (output data) can be sent a DIU by writing data to the transactions
that communicate with the DIU. The data can be modified on a transaction by transaction,
chain by chain, or request by request basis. The CP must write the data into shared
memory to communicate it to the IOP. The IOP reads the data and writes it into the dual
ported memory of the 10s prior to executing the VO request. Since the IOP may attempt to
read the data from shared memory while the CP may be modifying it, semaphores and
double buffering are used to maintain consistent data sets. Since a chain is executed as a
unit, the data associated with the chain must also be considered a unit. Accordingly, it is

17

not sufficient that the semaphores simply lock access to the transactions. The semaphores
must, at least, control the access to the VO chain data.

The user can read the information returned by the DIUs (input data) using the VO User
Interface read procedures. Accordingly, the user can obtain response data from the DIUs,
process the data, and generate output commands based upon the results. The data can be
read on a transaction by transaction, chain by chain, or request by request basis. As with
the write procedures, semaphores and double buffering are used to maintain consistent data
throughout the chains. The data returned by the DIUs may be corrupted by errors. The VO
User Interface returns a parameter that notifies the user of an occurrence of an error. In
addition, the data returned to the user may not have been updated since the previous read
procedure ("old data"). The occurrence of "old data" signifies that a scheduling overrun
has occurred except when the YO request and its associated applications task are not
synchronized (Le. both are free running cyclic tasks). The I/O User Interface allows the
user to check whether or not the data has been modified since the data was last read.

The occurrence of errors in the network may cause a DIU to become inaccessible. As a
result, a transaction requesting data from that DIU would not contain any valid information.
The ability to deselect a transaction allows the user to remove any undesired transactions
from a chain. The deselection command is communicated to the IOP through shared
memory. Since the IOP may be executing an VO request when the deselection procedure is
called, the CP may not be able to immediately send the command. The application tasks
should not have to wait for the deselect command to be accepted by the IOP. As a result,
the deselect procedure returns a parameter specifying whether or not the deselection request
was accepted.

The restoration of failed elements of the network may cause a previously inaccessible DlUs
to become reachable. The select procedure allows the user to include previously deselected
(or bypassed) transactions in the I/O chains. As with the deselect procedure, the VO User
Interface returns a parameter specifying whether or not the selection request was accepted.

As previously mentioned, the data returned by the DIUs may be corrupted by errors. The
user is notified of the occurrence of errors by a parameter returned by the read procedure
call. The I/O User Interface allows the user to determine if the error was in a chain (chain
time out) or a transaction of a chain. The user can isolate the location of an error and
disregard the corrupted data.

The creation of an I/O request requires the specification of its scheduling requirements (see
Section 2.1.1 - VO Request Construction). The VO request is scheduled on the IOP based
on these specifications and is executed when the requirements are met. If the VO request is
not able to executed when the scheduling requirements have been fulfilled, a scheduling
overrun occurs. The VO User Interface allows the user to check whether or not an overrun
has occurred.

18

2.13 YO Request Scheduling

The UO Request Scheduling provides the application with the flexibility to schedule each
VO request as a cyclic free running task that runs and signals the caller when complete or an
on demand task that is only scheduled when requested. The user specifies the scheduling
requirements for the UO requests when the VO requests are mated (see Section 2.1.1 - VO
Request Construction).

Each VO request may correspond to one or more application tasks defined by the user.
Accordingly, the YO User Interface must provide synchronization mechanisms to
coordinate the VO requests with the application tasks. The synchronization mechanisms
provided by the VO System Services are events and flags. Events are signals which are
observed by the GPC Real Time Operating System. The events interrupt the co-processor
and are used to activate/deactivate a task on the co-processor. Flags are passive signals
which may be observed or ignored by the application tasks. The flags do not interrupt the
co-processor and are used to indicate the completion of the VO requests.

The completion of an 40 request is indicated by a flag in shared memory. The VO System
Services on the IOP sets the flag when the VO request completes whether or not errors
occurred. The application tasks on the CP can read and clear the flag.

The completion of an UO request is indicated by an event if the user has specified this
option when creating the VO request. The VO System Services on the IOP signals the
event when the VO request completes whether or not errors occurred. These events are
used to activate application tasks (via the GPC Real Time Operating System) that are
blocked waiting for the completion of an VO request. The VO User Interface provides a
mechanism for an application task to obtain a pointer to an event, allowing the task to be
scheduled as an event-driven process.

On demand VO requests are started on the IOP only when the user issues a start command.
When an on demand VO request is created, the user must specify the priority of the request,
how often the completion event should be set, and the VO request time-out.

Periodic VO requests are executed periodically on the IOP. Accordingly, the user must
specify the period of the VO request. In addition, the priority of the VO request and VO
time-out must be provided. The periodic VO requests may be scheduled to start on
demand, at a specific time, or after a specific amount of time has expired. Furthermore, the
periodic YO requests may be scheduled to run forever or to stop on demand.

19

2 3 VO User Interface S o h a r e Specifications

As discussed in Section 2.1, the VO User Interface is divided into three sections: 40
Request Construction, VO Data Access Operations, and VO Request Scheduling.

The VO Request Construction function involves the allocation and initialization of VO
request records on the CP, data buffers in shared memory, and pmgradclata regions on the
VO Sequencer (10s - see appendix C for detailed description). This function also
communicates the VO request specifications to the IOP and creates companion VO records
(the IOP transaction, chain and VO request specification records that arc the IOP duals of
the transaction, chain and UO request records on the CP) which are used when executing
and processing the VO requests.

The Data Access Operations use the shared memory data buffers allocated during the VO
Request Construction to provide the appearance of memory mapped VO. These functions
use semaphores and double buffering to maintain consistent data sets. The Data Access
Operations also control the interprocessor communication required to allow the user to
select/deselect transactions and obtain error information.

The VO Request Scheduling function supports the use of flags and events to synchronize
application tasks on the CP with their corresponding VO requests.

2.2.1 YO Request Construction

The applications user is able to construct transactions, chains, and VO requests in an
hierarchical manner. Since the 40 requests are created on the CP and all 40 activity is
performed by the VO System Services on the IOP, the VO Request Construction process
must initialize the CP, IOP and shared memory. The design of the I/O Request
Construction function is discussed in the following sections.

2.2.1.1 Creation of a Transaction

The basis of the construction of an VO request is the specification of an VO transaction.
The format for the creation of a transaction is as follows:

CREATE-TRANSACTION(TRANSACTION-ID,
TRANSACTION-INFO);

where

TRANSACTION-ID is an identifier (returned by the VO User Interface) which
uniquely specifies the transaction. The applications programmer uses the
TRANSACTION-ID when using system calls during later operation.

20

TRANSACTION-INFO is a discriminated record (provided by the user) based on
whether it is an INPUT or OUTPUT transaction (specified by its IO parameter).

1. The TRANSACI'ION-INFO record always has the following fields:

DIU-ID is an identifier that specifies the device interface unit addressed.

NUM-DATABYTES-OUT is a parameter which specifies the number of
bytes that will be sent to the DIU.

DYNAMIC-OR-STATIC is a boolean that specifies whether the output data
associated with the transaction is dynamic or static.

DATA-BUFFER-OUTPUT is a parameter which specifies the address on the
CP of the user's output data buffer (for specifying output commands to the DIU
for this transaction).

2. If IO = INPUT, then the TRANSACTION-INFO record has the following
additional fields:

NUM-DATA-BYTES-IN is a parameter which specifies the number of bytes
that will be returned by the DIU.

MAXBEFORE-BYPASS is a parameter which specifies the maximum
number of errors that can be tolerated before the transaction is bypassed. If the
parameter is zero, then the transaction will not be bypassed.

TIME-OUT is a parameter which specifies the maximum length of time (even
number of microseconds) that can expire before an incoming data byte is
received.

DATA-BUFFER-INPUT is a parameter which specifies the address on the CP
of the user's input data buffer (to record the response data from the DIU for this
transaction)

The CREATE-TRANSACTION call allocates and initializes a transaction record object
using the information provided by the user. The allocation of the record involves the
initialization of an element of a local transaction pointer array. The local transaction pointer
array accesses a transaction record using the transaction ID as an index. As a result, the I/O
User Interface can directly access any information associated with a transaction, if its ID is
known. The UO User Interface returns the transaction ID to allow the application to
identify each transaction. The identity of the transaction is necessary when the user
constructs chains, checks for transaction errors, and selects/deselects transactions.

21

Due to limited dual ported memory (4000 bytes for user VO chains and data) in the IOS, the
number of transactions that can be created is limited. When the transaction is created, the
size requirements of the transaction (program and data memory requirements) are calculated
and compared to the available memory space. If memory required is less than the memory
available, then a section of dual ported memory is reserved for this transaction. If the
memory required is greater than the available memory, an exception is raised to the user
indicating the problem.

After the initialization of the transaction record, the CREATE-TRANSACTION process
running on the CP allocates two input data buffers (if an input transaction) and two output
data buffers in shared memory. Two sets of YO data buffers are allocated per transaction to
eliminate data contention problems between the VO System Services readwrite tasks
executing on the CP and the readwrite tasks executing on the IOP. Data contention is
eliminated because each processor is always able to obtain one of the two buffers. The
processor that is writing data into shared memory determines which buffer is available (not
locked by the other processor) prior to writing. The processor that is reading data
determines the available buffer that contains the most current data. In order to select and
lock the I/O buffers, the processes running on the CP and IOP allocate common data buffer
select variables (pre-defined flags) in shared memory. These select variables are protected
by semaphores so that the variables are only modified by one process at a time. In
addition, two error status records are allocated in shared memory to associate error
information with each set of VO buffers. As a result, this "Double Buffering" scheme
allows the simultaneous writing and reading of VO request data (to different buffers) while
maintaining consistent data and error information.

After the VO buffers have been allocated, the output data buffers are initialized if the user
provides initial data. The CP process then waits (polls a flag) until the corresponding IOP
communication task acknowledges (sets the flag) that it can accept the new transaction
record. The CP process then writes the transaction specifications to shared memory. The
CP process also writes, into a predefined memory location, the addresses of the previously
allocated shared UO data buffers. After the information has been written, the CP process
signals the IOP communication task using an event. The IOP task reads the transaction
specifications, allocates a compahion transaction record, initializes a local transaction
pointer, and creates the transaction record. The communication protocol between the CP
and IOP is illustrated in the Figure 9.

22

CP IOP

Parameters;

Allocate SM based I

011 the User's Desired Number
OfDataBytes;

Wait-fw-IOP-Ready ;

Put the Addrs of the
SM Data Buffers into S M

Put the Record Info. into m
Initialize the SM
Data Buffer;

Use an Event to
Schedule the IOP
Communication Task;

I

Completion Signal from Previous Cycle
Allowing this Procedure Call to Proceed

/-
Wait-fOr-!khedule;

Dynamically Allocate a
RecordType;

ReadtheRecord
Paramern from SM;

Read the Addrs of the SM
Data Buffers;

Initialize Local Record
Pointer;

Use a Flag to Signal the
Completion of the Initialization / of the Companion Record

1
End Loop;

Completion Signal allowing Next
Procedure Call to Proceed

Figure 9. Interproasor Synchmnization for Communication
of I/O Request Specifications

2.2.12 Creation of a Chain

After the specification of the transactions, they are grouped into chains. The format for the
specification of a chain is as follows:

CREATE-C"(CHAIN-ID,
NETWORK-ID,
TRANS ACTION-LIST)

where

CHAINJD is an identifier (returned by the I/O User Interface) which uniquely
specifies the chain. The application uses the CHAIN-ID when using system calls
during later operation.

23

NETWOW-ID is an identifier which specifies the network on which the chain will
be executed (provided by the user).

TRANSACTION-LIST is a variant object which specifies the number of
transactions in the chain and the corresponding array of TRANSACTION-IDS
(provided by the user).

The CREATE-CHAIN call allocates and initializes a chain record object using the
information provided by the user. The allocation of the record involves the initialization of
an element of a local chain pointer array. The local chain pointer array accesses a chain
record using the chain ID as an index. As a result, the VO User Interface can directly
access any information associated with a chain, if its ID is known. The initialization
process forms a doubly linked tree between the transactions and their respective chain
allowing direct access to a chain from a transaction or to a transaction from a chain
(illustrated in Figure 10). The CP process returns the chain ID to allow the applications
user to identify each chain. The identity of the chain is necessary when the user constructs
VO requests and checks for chain errors.

After the allocation and initialization of the chain record, the CP process communicates the
information to the IOP communication task using the same protocol as involved in sending
transaction records. The IOP task creates a companion chain record on the IOP and assigns
an element of its local chain pointer array to point to it.

2.2.13 Creation of an YO Request

After the specification of the chains, they are grouped into VO requests. The format for the
specification of an I/O request is:

CREATELIOR(IOR-ID,
CHAIN-LIS T,
SCHED-INFO)

where

IOR-ID is an identifier (returned by 1/0 User Interface) which allows the
application to uniquely specify the I/O request. The applications programmer uses
the IORJD when using system calls during later operation.

24

YO Request
Record

Rgure 10. Data Structure wed for YO Request Comtm& 'on and Interprocessor

CHAIN-LIST is a variant object which specifies the number of chains in the UO
request and the corresponding array of CHAIN-IDS (provided by user).

SCHED-INFO is a discriminated record (provided by the user) based on whether it
is an ON-DEMAND or PERIODIC I/O request (specified by its
HOW-SCHEDULED parameter).

1. The SCHED-INFO record always has the following fields:

PRIORITY is a parameter which specifies the priority (0 - 7) of the associated
IOP task. A lower priority number implies a lower degree of urgency and an
VO request with a priority of 7 will preempt lower priority requests.

COMPLETION-EVENT is a parameter indicating the frequency
(ONCE-ONLY, ALWAYS, NEVER) with which an VO request uses an event
to signify its completion.

IOR-TIME-OUT is a parameter which specifies the maximum length of time
(in microseconds) that an I/O request actively possesses an I/O network(s)

25

during its execution. The parameter is used by the VO System Services when
executing and processing the VO request.

2. If HOW-SCHEDULED = PERIODIC, then the SCHED-INFO record requires
the following additional fields:

REPETITION-PERIOD is a parameter which specifies the length of the
repetition period in seconds.

WHEN-TO-STOP is an enumeration type which may be assigned to
NEVER-STOP or STOP-ON-DEMAND. The parameter is used to specify
how the I/O request should complete.

START is a discriminated record based on whether the HOW-STARTED
discriminate is specified to be START-ON-DEMAND,
START-AFER-DELAY, or START-AT-ABSOLUTE-TIME.

a. If HOW-STARTED = START-ON-DEMAND

b. If HOW-STARTED = START-AFTER-DELAY
- Additional fields are not necessary.

- The additional field WAIT-FOR is necessary which specifies the
length of time to wait before the VO request is initiated (in seconds).

- The additional field AT-ABSOLUTE-TIME is necessary to specify
C. If HOW-STARTED = START-AT-ABSOLUTE-TIME

the time to start the VO request (in seconds).

The CREATE-TOR call allocates and initializes an VO request record object using the
information provided by the user. The allocation of the record involves the initialization of
an element of a local I/O request pointer array. The local VO request pointer array accesses
an VO request record using the VO request ID as an index. As a result, the VO User
Interface can directly access any information associated with an VO request, if its ID is
known. The initialization process forms a doubly linked tree between the chains and their
respective VO request (allowing direct access to an VO request from a chain or to a chain
from an VO request). As a result; transactions can indirectly access their associated VO
request as illustrated in the Figure 10. The CREATE-IOR process running on the CP
returns the VO request ID to allow the applications user to identify each request. The
identity of the request is necessary when referencing VO requests from application
proces se s/t as ks .

The initialization of the VO request record involves the calculation of a VO System Services
VO request time out. As previously mentioned, the VO request time out is the length of
time that the VO request actively possesses an VO network(s) during its execution. Since
each chain of the VO request executes (nearly) simultaneously, the VO request time out only

26

depends on the longest chain time out. The chain time out, which is the length of time a
chain requires possession of a network, is based on the number of transactions, length of
the transaction time outs, and amount of VO data associated with the chain. After the UO
System Services v”0 request time out is calculated, it is compared to the VO request time out
provided by the user to determine if the user’s UO request time out is too short. If the
user’s I/O request time out is deemed to be too short, a warning is issued to the user.

After the allocation and initialization of the 1/0 request record, the CP process
communicates the information to the IOP communication task using the same protocol as
involved in sending transaction records. The IOP task creates a companion VO request
record and assigns an element of its local UO request pointer array to point to it.

2.22 VO Data Access Operations

The applications user is able to access the data associated with the VO requests in a memory
mapped fashion. The appearance of memory mapped VO is accomplished by allocating
data sections in shared memory to emulate the data regions of the 10s and making the
reading/writing protocol transparent to the user. The VO Data Access function also
provides error detection and chain reconfiguration capabilities to the user. The design of
the VO Data Access function is discussed in the following sections.

222.1 VO User Interface Write Procedures

The I/O User Interface allows the user to write output data to DIUs on a transaction by
transaction or VO request by VO request basis. The ability to write data only to a
transaction is desirable when a chain is mixed but primarily consists of static command
frames. The ability to write data to all of the output data buffers is desirable when one or
more of the chains of an VO request are mixed but primarily consist of dynamic command
frames. The procedures for writing output data to DIUs are as follows:

1. WRITE-TRANSACTION(TRANSACTION-ID,
IOR-DATA-IS-CONSISTENT,
LOCKED);

2. WRITE_IOR(IOR-ID,
LOCKED);

3. WRITEINITIAL-IOR-DATA(IOR-ID,
-);

27

TRANSACTION-ID is a parameter which uniquely identifies the associated
transaction. It is assigned by the system when the transaction is created and must
be provided by the user for the WRITETRANSACIION system call.

IOR-ID is a parameter which uniquely identifies the associated VO request. It is
assigned by the system when the VO request is created and must be provided by the
user for the WRITE_IOR system call.

IOR-DATA-IS-CONSISTENT is a boolean (provided by the user) which, when
TRUE, signifies that the output data for the 40 request is consistent.

LOCKED is a boolean (returned by VO User Interface) which, when TRUE,
signifies that the shared memory buffer select area was locked when the
applications process/task attempted to select an output buffer.

Since the VO System Services on the IOP controls access to the 10s dual ported memory,
the output data is written into shared memory from the CP rather than directly to the 10s.
An output data buffer select variable is used to determine an available buffer. The buffer
select variable is guarded by a semaphore to guarantee mutual exclusion. After a buffer is
selected, the output data is written and the buffer is made available to the I/O System
Services on the IOP. As a result, the chain output data sets of the VO request are consistent
and VO data contention is avoided.

The WRITE-IOR procedure performs a test and set operation on the semaphore that guards
the output data buffer select variable for the VO request and if the select region is unlocked,
it selects an available buffer, unlocks the select region, and writes the dynamic output data
for the entire VO request into shared memory. If the buffer select variable is locked, the
procedure continues to perform the test and set operation until the region becomes unlocked
or 100 test and set iterations pass. If 100 iterations pass and the select region is still
locked, it is assumed that a fault has caused a deadlock situation (select region is locked but
neither processor has control of it). If such a deadlock situation occurs, the procedure
disregards the semaphore, determines the available buffer, resets the semaphore, sets the
LOCKED parameter, and writes the output data.

After the output data has been written into shared memory, the select variables must be
updated to specify the available buffer with the most current data. The WRITE-IOR
procedure performs the test and set process as previously described, and when the select
region is unlocked, the buffer select variable (in shared memory) is set equal to the buffer
into which the output data was written.

28

Similarly, the WRlTE-TRANSACTION procedure checks the locking mechanism, selects
a buffer, and writes the output data for the specified transaction. Yet, the user may want to
change one transaction in each chain before the associated VO request is executed.
Accordingly, the Write Transaction procedure allows the user specify if the data is
consistent throughout the VO request. If the data is not consistent, the buffer is not made
available to the VO System Services on the IOP, and the VO System Services will read the
other data buffer until the user states that the data is consistent. As a result, the user does
not have to worry about an I/O request being executed with inconsistent data.

The WRITE-INITIAL-IOR-DATA procedure is identical to the WRITE-IOR procedure
except that it writes all of the VO request output data (dynamic and static) into shared
memory. Typically, this procedure is used to initialize the 10s output buffers.

232.2 I/O User Interface Read Procedures

The I/O User Interface allows the user to read input data from DIUs only on an VO request
by VO request basis. Since the input data is dynamic, all of the input data associated with
an YO request is desired. The format for reading data from DIUs is as follows:

READ-IOR(IOR-ID,
LOCKED,
ERROR,
OLD-D ATA) ;

where

IOR-ID is a parameter which uniquely identifies the associated VO request. It is
assigned by the system when the I/O request is created and must be provided by the
user for the READ-IOR system call.

LOCKED is a boolean (returned by 40 User Interface) which, when TRUE,
signifies that the shared memory buffer select area was locked when the
applications process/task attempted to select an input buffer.

ERROR is a boolean (returned by 1/0 User Interface) which, when TRUE,
signifies that an error occurred in at least one of the chains of the I/O request. The
application can isolate the location of the error by invoking the procedures
TRANSACTION-ERROR and CHAIN-ERROR.

OLD-DATA is a boolean (returned by VO User Interface) which, when TRUE,
signifies that the VO request data was NOT updated by the IOP since the previous
READ-IOR call. The data was NOT read during this call.

29

Since the VO System Services running on the IOP controls access to the 10s dual ported
memory, the input data is read from shared memory to the CP rather than directly from the
10s. An input data buffer select variable is used to determine the available buffer that
contains the most current data. A semaphore is used to guarantee that the buffer select
variable is only modified by one processor at a time (note that this is a different semaphore
than that used for output data buffers). After the available buffer is selected, it is locked by
the VO System Services on the CP to maintain consistent data throughout the buffer
(prevents the VO System Services on the IOP from writing into the buffer while the CP is
reading from it), and the input data and associated error information is read into the CPs
local memory.

The READ-IOR procedure performs a test and set operation on the semaphore that guards
the input data buffer select variable for the VO request and if select region is unlocked, the
procedure selectsflocks an available buffer, unlocks the select region, and reads the input
data and error status for the VO request. If the buffer select variable is locked, the
procedure continues to perform the test and set operation until the region becomes unlocked
or 100 test and set iterations pass. If 100 iterations pass and the select region is still
locked, it is assumed that a fault has caused a deadlock situation (region is locked but
neither processor has control of it). If such a deadlock situation occurs, the procedure
disregards the semaphore, determines the available buffer, resets the semaphore, sets the
LOCKED parameter, and reads the input data and error information.

After the input data and error status has been read from shared memory, the input data
buffer select variable must be updated to unlock the input data buffer. The Read VO
request procedure performs the test and set process as previously described, and when the
select region is unlocked, the buffer is unlocked by modifying the select variable in shared
memory.

The VO Request Completion Function (discussed in Section 3.1.1.3) checks for chain and
transaction errors. The errors are communicated to the VO System Services on the CP by
setting flags in shared memory. The ERROR flag is an ORing of all chain and transaction
errors.

An "old data" flag is returned to the application task to notify the task that the input data has
not been updated since it was last read. This flag is set by the Read VO Request process,
and it is reset when the IOP writes new data into the shared data buffers. If the Read VO
Request procedure returns a true value in the OLDDATA flag and the application process
is synchronized with the VO request, then a scheduling overrun has occurred.

30

2.2.23 I/O User Interface Selection and Deselection Pmcedures

The I/O User Interface allows the user to select and deselect transactions from their
corresponding chains. As a result, the user has some error recovery control and can
dynamically reconfigure the VO requests. The format for selecting and deselecting
transactions is as follows:

1. SELEm-TRANSACI'XON(TRANSACTION-ID,
REQUEST-ACCEPTED)

2. DESELECT-TRANSACTION(TRANSACTION-ID,
REQUEST-ACCEPTED)

where

TRANSACTION-ID is a parameter which uniquely identifies the associated
transaction. It is assigned by the system when the transaction is created and must
be provided by the user for the SELECT-TRANSACTION or
DESELECT-TRANSACTION system call.

REQUEST-ACCEPTED is a boolean (returned by VO User Interface) that, if
TRUE, signifies that the command was accepted.

As previously mentioned, the VO System Services on the IOP controls access to the 10s
dual ported memory. Accordingly, the transaction selection (or deselection) command
must be communicated to the IOP. The basic unit of information that must be transmitted is
the type of command (selection or deselection) and transaction ID. The VO User Interface
uses two five element arrays, two semaphores and two boolean flags to communicate
transaction selection and deselection commands from the CP to the IOP. The arrays (one
for selection and one for deselection) are buffers to communicate the transaction IDS to the
IOP. The semaphores are used to maintain consistent sets of IDS, and the boolean flags are
used to notify the IOP of the selection and deselection commands. The CP control flow
involved in the communication of a SELECT-TRANSACTION procedure call is outlined
below:

1) The application invokes the SELECT-TRANSACTION system call.
2) The CP Select Transaction process test and sets the semaphore locking the

shared memory select buffer.
3) If the IOP is reading from or writing to the buffer (is locking the region), the

Select Transaction process notifies the application that the request was not
accepted.

31

If the IOP is not reading from or writing to the buffer (the region is available),
the Select Transaction process searches for the first unused element in the array
(the test and set function has locked the buffer).
If the array is full (five selection requests are pending), the Select Transaction
process notifies the application that the request was not accepted and unlocks
the buffer.
If an element of the array is available, the Select Transaction process initializes
the element, sets a shared memory flag to notify the IOP, and unlocks the
buffer.

The IOP control flow involved in the processing of an VO request (with respect to the
SELECT_TRANSACTION and DESELECI'-TRANSACTION procedure calls) is outlined

The Queue Manager task accepts a pending I/O request to be processed.
The Queue Manager task checks the selection shared memory flag to determine
if a selection request has been made.
If the flag is not set, then the Queue Manager task processes the VO request.
If the flag is set, the task test and sets the semaphore locking the shared
memory select buffer.
If the CP is reading from or writing to the buffer (is locking the region), the
Queue Manager processes the VO request.
If the CP is not reading from or writing to the buffer (the region is available),
the Queue Manager process reads the first transaction ID (the test-and set
function has locked the buffer).
The Queue Manager task modifies the 10s program area to select the
transaction, initializes the transaction ID to a null value, and checks the array to
determine if another transaction is to be selected.
If another transaction ID is in the shared memory buffer, then (7) is repeated.
If not, then the Queue Manager task unlocks the select buffer.
After the select transaction requests have been processed, the Queue Manager
repeats the same process (2-8) for deselection requests.

10) After the deselect transaction requests have been processed, then the Queue
Manager task processes the I/O request.

To deselect a transaction, the Queue Manager task modifies the chain program so that the
10s skips over the set of instructions used to execute the deselected transaction. To select a
transaction, the task modifies the chain program so that the 10s does not skip over the
relevant set of instructions.

32

2.2.2.4 I/O User Interface E m Checking procedures

Errors may occur during the execution of the 40 requests. The user is notified of the
occmnce of an erroxfs) when the input data corresponding to the VO request is read. The
VO User Interface provides system calls to allow the user to determine the location of the
error@). The formats for these calls are as follows:

1. TRANSACTION-ERROR(TRANSACTI0NJD)

2. TRANSACTION-ISBYPAS SED(TRANSACTI0NJD)

3. CHAIN-ERROR(CHAIN-ID,
ERROR-IN-CHAIN,
ALL-TRANS ACTIONS-ARE-BAD,
CHAIN-DID-NOT-COMPLETE,
TRANS ACTION-NOT-EXECUTED,
NETWORK-STATUS)

where

TRANSACTION-ID is a parameter which uniquely identifies the associated.
transaction. It is assigned by the system when the transaction is created and must
be provided by the user for the TRANSACTION-ERROR function call.

CHAIN-ID is a parameter which uniquely identifies the associated chain. It is
assigned by the system when the chain is created and must be provided by the user
for the CHAIN-ERROR procedure call.

ERROR-IN-CHAIN is a boolean parameter (returned by the I/O User Interface)
that, if TRUE, signifies that an error occurred during the execution of the chain.

ALL-TRANSACTIONS-ARE-BAD is a boolean parameter (returned by the I/O
User Interface) that, if TRUE, signifies that errors occurred in all of the transactions
of the chain.

CHAIN-DID-NOT-COMPLETE is a boolean parameter (returned by the VO User
Interface) that, if TRUE, signifies that the chain did not complete when the VO
request was processed.

TRANSACTIONS-NOT-EXECUTED is a boolean parameter (returned by the VO
User Interface) that, if TRUE, signifies that one or more transactions in the chain
were not executed because they were deselected and/or bypassed.

33

NETWORK-STATUS is a enumerated object (returned by the I/O User Interface)
that signifies the state of the network when the 1/0 request was executed
(In-Service, Temporarily-Out-of-Service, Permanently-Out-of-Service).

As discussed in the VO Communications Management Functional Requirements (Section
3.1), the VO Traffic Control function performs the VO Request Completion processing.
The VO Request Completion function primarily consists of chain and transaction error
processing. If an error is detected, then flags are set in shared memory to notify the VO
System Services on the CP of its existence and location. Each transaction has two boolean
status flags (to convey error and bypass information) and each chain has five status flags
(in correspondence with the parameters returned by the CHAIN-ERROR procedure). The
CHAIN-ERROR procedure returns the state of the corresponding error flags to the user.
If the state of the ERROR-IN-CHAIN boolean is true, then the transaction(s) which has an
error can be isolated using the TRANSACTION-ERROR procedure. Furthermore, if the
state of the TRANSACTION-NOT-EXECUTED flag is true, the
TRANSACTION-IS-BYPASSED procedure can be used to determine whether or not a
transaction has been bypassed by the I/O System Services. The
TRANSACTION-IS-BYPASSED procedure specifies which transactions have been
bypassed by the I/O System Services (not deselected by the user). If one or more
transactions have been deselected by the user, the TRANSACTION-NOT-EXECUTED
flag will be set by the 1/0 System Services, but the 'associated
TRANSACTION-IS-BYPASSED fields will not be set. The application must account for
the transactions that it &selects.

The status information returned by the CHAIN-ERROR, TRANSACTION-ERROR, and
TRANSACTION-IS-BYPASSED procedures is only valid after the READ-IOR
procedure has been called due to the "Double Buffering" scheme. Since two sets of VO
buffers are used for interprocessor data communication, two sets of status buffers are
required to maintain consistent dawstatus information (each data buffer must its own status
buffer). When the READ-IOR procedure is called, one set of data and status buffers is
written into the local memory on the CP from shared memory. The CHAIN-ERROR,
TRANS ACTION-ERROR, and TRANS ACTION-ISB YPAS SED procedures read the
status buffer in local memory when returning status information to the application. As a
result, the READ-IOR procedure must be called prior to invoking any of these error
checking procedures.

2.2.25 I/O User Interface Overrun Check

If an VO request can not be executed when its scheduling requirements have been fulfilled,
then a scheduling overrun occurs. The VO User Interface allows the user to determine if an
overrun has occurred using the following function call:

IOR-HAS-OvERRUN(I0R-ID)

34

where

IOR-ID is a parameter which uniquely identifies the associated VO request. It is
assigned by the system when the VO request is created and must be provided by the
user for the IOR-HAS-OVERRUN system call.

The occmnce of an overrun is detected by the Posting task associated with the VO request
(a Posting task is a ksk that is scheduled on the IOP based on the scheduling requirements
of an UO request). A parameter (integer number) in shared memory is updated to reflect the
occurrence (or frequency of occurrences) of an overrun. This parameter is read from
shared memory and returned to the user by the IOR-HAS -OVERRUN function.

2 2 3 I/O Request Scheduling

Each I/O request may correspond to one or more application tasks executing on the CP.
Since the VO requests are processed on the IOP, the VO User Interface must provide flags
and events (synchronization mechanisms) to coordinate the VO requests with the
application tasks.

2.2.3.1 Synchronization Using Flags

Flags are used to indicate the completion of VO requests. The VO Request Completion
processing involves the setting of a flag in shared memory to notify the user that the request
has been executed and processed. The VO User Interface allows the user to read and clear
these flags.

1. IOR-READY(I0R-ID)

2. CLEAR-IOR-READY(I0RJD)

3. IORJXEADY-AND-CLEAR(IOR-ID)

where

IOR-ID is a parameter which uniquely identifies the associated VO request. It is
assigned by the VO System Services when the VO request is created and must be
provided by the user for the system call.

The IOR-READY function call reads the completion flag associated with the VO request
identified by the IOR-ID parameter. If the VO request has completed, then the flag will be
set (true). The flag may be cleared using the procedure CLEAR-IOR-READY. In

35

addition, the flag can be read and cleared in a single step using the procedure
IOR-READY-AND-CUAR.

Flags are also used to synchronize the I/O System Services on the CP and the IOP. The
IOP must wait for the CP to create and communicate the UO request specifications.
Alternatively, the CP must wait for the IOP to initialize the UO Services. Accordingly,
functions are provided to allow the CP to signal and wait for the IOP.

1. CP-COMPLETED

The CP-COMPLETED function sets a flag in shared memory to acknowledge the
completion of YO request initialization process. The WAIT-UNTIL-IOP-COMPLETED
function allows the CP to wait until the IOP initializes the I/O Services before continuing.

2.2.3.2 Synchronization Using Events

The completion of an I/O request is indicated by an event if user has specified this option
when creating the I/O requests. The I/O User Interface allows the user to obtain a pointer
to the UO request completion event allowing the scheduling of application tasks through the
GPC Real Time Operating System. The format for the function call is as follows:

IOR-COMPLETION-EVENT(IOR-ID)

where

IOR-ID is a parameter which uniquely identifies the associated I/O request. It is
assigned by the system when the I/O request is created and must be provided by the
user for the system call.

The frequency that the I/O User Interface uses an event to signal the completion of an I/O
request is specified when the request is created. The completion event may be specified to
occur once only, always, or never. The event is used to either initially synchronize an
application task with its corresponding I/O request or to periodically trigger an on demand
application task.

Events are also used to start and stop I/O requests. The following system calls are available
to the user.

1. START-IOR(IORJD)

2. STOP-IOR(IOR-ID)

36

where

IOR-IJl is a parameter which uniquely identifies the associated UO request. It is
assigned by the system when the VO request is created and must be provided by the
user for the system call.

These procedure calls are used to start or stop an UO request after a periodic request has
been created with the START-ON-DEMAND or STOP-ON-DEMAND option. The
START-IOR procedure is also used to start on demand UO requests.

37

2.3 UO User Interface Sohare Process Descriptions

IOSS - IOR-SPEC

The VO User Interface Software Process Descriptions divide the description of the I/O User
Interface into functional packages. This section uses Booch diagrams (a high level
diagrammatic design methodology put forward by Grady Booch - see [3]) and process
descriptions to present the Software Specifications in more detail. The Booch diagrams are
used to map the VO User Interface Software Specifications into functional packages, tasks,
and subprograms. The process descriptions are used to describe these functional groups in
detail.

The VO User Interface is divided into two functional packages: 40 System Services 40
Request Specification and Application Log.

23.1 UO System Services YO Request Specification

CHAIN-ID-TYPE 1

I

PERIODIC-SCHED-RECORD
I ~

IOR-SCHEJ-RECORD

(TRANSACTION-INFO-RECORD 1

CREATE-TRANSACTION
I I

DESELECT-TR ANS ACTION

I READ_IOR I

I

38

IOSS-IOR-SPEC

START-IOR

STOP-IOR I
1

I IOR-READY I

I I I IOR-H AS-OVERRUN

WRITE-INITIAL-IOR-D ATA

WAIT-FOR-IOP-COMPLETED

I CP-COMPLETED I
I

WAIT-FOR-SPEC-RECEIVED 7

39

2.3.1.1 Process Name: Create Transaction

Inputs: Transaction Information Record

Reqllimnents
Reference:

Transaction Identifier
Transaction Specifications

VO User Interface Functional Requirements, Section 2.1.1
VO User Interface Software Specifications, Section 2.2.1.1

Nota: None

The Create Transaction process allocates memory on the CP and initializes a transaction
record (transaction specifications) based on the transaction information provided by the
application. The application can create two types of transactions:

1) An input transaction which involves an output sequence of instructions that
requests information from a DIU and an input sequence of instructions that
waits for the DIU response.

2) An output transaction which consists of an output sequence of instructions that
sends information to a DIU and does not expect a response.

The application must provide the following information for all transactions:
1) The type of transaction - input or output.
2) DIU identifier.
3) Number of output data bytes.
4) Type of output data - dynamic or static.
5) Pointer to the output data buffer on the CP.

The application must provide the following additional information for input transactions:
1) Number of input data bytes.
2) Maximum number of errors allowable before system bypass.
3) Allowable time out before an incoming data byte is received.
4) Pointer to the input data buffer on the CP.

The process calculates the transaction identifier and returns it to the application. The
identity of the transaction is necessary when the user constructs UO chains, checks for
transaction errors, and selects/deselects transactions. The process also initializes an
element of a local transaction pointer array which allows the VO User Interface to access
any information associated with the transaction if its ID is known. In addition, the process

40

initializes internal variables (variables that are transparent to the application) which are used
far VO error processing.

After the transaction record is initialized, the Create Transaction process communicates this
information to the IOP communication task through shared memory. The communication
process is initiated by waiting for the IOP task to acknowledge that it is ready for new data.
After the acknowledgement has been received, the Create Transaction process writes the
transaction record information into pre-defined locations. The process then allocates two
sets of VO buffers in shared memory to communicate data between the CP and IOP. The
pointers to these data buffers are communicated to the IOP task through pre-defined
locations in shared memory. In addition, if the application provides initial output data, the
process initializes the shared memory output data buffers. After the allocation and
initialization is finished, the Create Transaction process uses an event to notify an IOP
communication task that the new transaction specifications and data pointers are available
and can be read.

When the event activates the IOP communication task, the task creates and initializes a
companion transaction record on the IOP and assigns an element of its local transaction
pointer array to point to it.

2.3.1.2 Process Name: Create Chain

Network Identifier
Transaction List

Chain Identifier
Chain Specifications

Requiremenls
RderenCe: I/O User Interface Functional Requirements, Section 2.1.1

VO User Interface Software Specifications, Section 2.2.1.2

Notes: None

The Create Chain process allocates and initializes a chain record object using the
information provided by the application. The allocation of the record involves the
initialization of an element of a local chain pointer array. The local chain pointer array
accesses a chain record using the chain identifier as an index. As a result, the VO User
Interface can directly access any information associated with a chain, if its ID is known.
The initialization process forms a doubly linked tree between the transactions and their
respective chain (allowing direct access to a chain from a transaction or to a transaction

41

from a chain). The Create Chain process returns the chain ID to allow the applications user
to identify each chain. The identity of the chain is necessary when the user constructs VO
requests and checks for chain errors.

After the allocation and initialization of the chain record, the Create Chain process
communicates the information to the IOP communication task using the same protocol as
involved in sending transaction records. The IOP task creates a companion chain record on
the IOP and assigns an element of its local chain pointer array to point to it.

2.3.1.3 Process Name: Create VO Request

m-

aw

Requirements
Reference:

Scheduling Information
Chain List

VO Request Identifier
VO Request Specifications

VO User Interface Functional Requirements , Section 2.1.1
UO User Interface Software Specifications, Section 2.2.1.2

Nota: None

The Create VO Request call allocates and initializes an VO request record object using the
information provided by the user. The allocation of the record involves the initialization of
an element of a local VO request pointer array. The local VO request pointer array accesses
an UO request record using the VO request identifier as an index. As a result, the VO User
Interface can directly access any information associated with an UO request, if its ID is
known. The initialization process forms a doubly linked tree between the chains and their
respective I/O request (allowing direct access to an VO request from a chain or to a chain
from an I/O request). As a result, transactions can indirectly access their associated VO
request. The CP returns the VO request ID to allow the applications user to identify each
request. The identity of the request is necessary when referencing VO requests from
application processes/tasks.

After the allocation and initialization of the I/O request record, the CP communicates the
information to the IOP using the same protocol as involved in sending transaction records.
The IOP creates a companion VO request record and assigns an element of its local UO
request pointer array to point to it.

42

2.3.1.4 Process Name: Select Transaction

Transaction Identifier

Note:

Confirmation of Select Request being Accepted
Transaction Select Flag
Transaction Select Array

VO User Interface Functional Requirements, Section 2.1.2
VO User Interface Software Specifications, Section 2.2.2.3

None

Desaiptim:

The Select Transaction process sends a selection request to the VO Communications
Management function. The protocol involved in the communication of the selection request
is discussed in detail in Section 2.2.2.3 of the VO User Interface Software Specifications.

2.3.1.5 Process Name: Deselect Transaction

Inpuk Transaction Identifier

Requin?me!nts
Reference:

Confirmation of Deselect Request being Accepted
Transaction Deselect Flag
Transaction Deselect Array

UO User Interface Functional Requirements, Section 2.1.2
VO User Interface Software Specifications, Section 2.2.2.3

Nota: None

Desaiptim:

The Deselect Transaction process sends a deselection request to the VO Communications
Management function. The protocol involved in the communication of the deselection
request is discussed in detail in Section 2.2.2.3 of the UO User Interface Software
Specifications.

43

2.3.1.6 Process Name: Write UO Request

UO Request Identifier

State of the Locking Semaphore
Dynamic Output Data

UO User Interface Functional Requirements, Section 2.1.2
UO User Interface Software Specifications, Section 2.2.2.1

Notes: None

The Write UO Request procedure performs a test and set operation on the semaphore that
guards the output data buffer select variable for the I/O request. If the select region is
unlocked, it selects an available buffer, unlocks the select region, and writes the dynamic
output data for the entire UO request into shared memory. If the buffer select region is
locked, the procedure continues to perform the test and set operation until the region
becomes unlocked or 100 test and set iterations pass. If 100 iterations pass and the select
region is still locked, it is assumed that a fault has caused a deadlock situation (select region
is locked but neither processor has control of it). If such a deadlock'situation occurs, the
procedure disregards the semaphore, determines the available buffer, resets the semaphore,
sets the LOCKED parameter, and writes the output data.

After the output data has been written into shared memory, the output data buffer select
variable must be updated to specify the available buffer with the most current data. The
Write UO Request procedure performs the test and set process as previously described, and
when the select region is unlocked, the buffer select variable (in shared memory) is set
equal to the buffer into which the output data was written.

44

2.3.1.7 Process Name:

Note:

Desaiptim:

Read VO Request

VO Request Identifier

State of the Locking Semaphore
Error Flag
Old Data Flag
Input Data

VO User Interface Functional Requirements, Section 2.1.2
40 User Interface Software Specifications, Section 2.2.2.2

None

The Read VO Request procedure performs a test and set operation on the semaphore that
guards the input data buffer select variable for the VO request. If select region is unlocked,
the procedure selectsbocks an available buffer, unlocks the select region, and reads the
input data and error status for the 40 request. If the buffer select region is locked, the
procedure continues to perform the test and set operation until the region becomes unlocked
or 100 test and set iterations pass. If 100 iterations pass and the select region is still
locked, it is assumed that a fault has caused a deadlock situation (region is locked but
neither processor has control of it). If such a deadlock situation occurs, the procedure
disregards the semaphore, determines the available buffer, resets the semaphore, sets the
LOCKED parameter, and reads the input data and error information.

The I/O Request Completion function checks for chain and transaction errors. The errors
are communicated to the CP by setting flags in shared memory. An error flag is returned
to the application, and it represents an ORing of all chain and transaction errors.

An "old data" flag is returned to the application task to notify the task that the input data has
not been updated since it was lasr read. This shared memory flag is set by the Read 40
Request process, and it is reset when the IOP writes new data into the shared data buffers.
If the Read VO Request procedure returns a true value in the "old data" flag and the
application process is synchronized with the UO request, then a scheduling overrun has
occurred.

After the input data has been read from shared memory, the input data buffer select variable
must be updated to unlock the input data buffer. The Read 40 request procedure performs
the test and set process as previously described, and when the select region is unlocked, the
buffer is unlocked by modifying the select variable in shared memory .

45

2.3.1.8 Process Name: Write Transaction

Requirements
Reference:

Transaction Identifier
Data is Consistent Boolean

State of the Locking Semaphore
Output Data for the Transaction

VO User Interface Functional Requirements, Section 2.1.2
VO User Interface Software Specifications, Section 2.2.2.1

NdeS: None

Description:

The Write Transaction procedure performs a test and set operation on the semaphore that
guards the output data buffer select variable for the UO request. If the select region is
unlocked, it selects an available buffer, unlocks the select region, and writes the output data
for the transaction into shared memory. If the buffer select region is locked, the procedure
continues to perform the test and set operation until the region becomes unlocked or 100
test and set iterations pass. If 100 iterations pass and the select region is still locked, it is
assumed that a fault has caused a deadlock situation (select region is locked but neither
processor has control of it). If such a deadlock situation occurs, the procedure disregards
the semaphore, determines the available buffer, resets the semaphore, sets the LOCKED
parameter, and writes the output data.

The user may want to change one transaction in each chain before the associated VO request
is executed. Accordingly, the Write Transaction procedure allows the user specify if the
data is consistent throughout the I/O request. If the data is not consistent, the buffer is not
made available to the UO System Services on the IOP. As a result, the user does not have
to worry about an I/O request being executed with inconsistent data.

After the output data has been written into shared memory, the output data buffer select
variable must be updated to specify the available buffer with the most current data (if the
data is consistent). The Write Transaction procedure performs the test and set process as
previously described, and when the select region is unlocked, the buffer select variable (in
shared memory) is set equal to the buffer into which the output data was written.

46

23.1.9 Process Name: YO Request Completion Event

VO Request Identifier

outpls Event Pointer

Requirements
RelerenCe: VO User Interface Functional Requirements, Section 2.1.3

VO User Interface Software Specifications, Section 2.2.3.2

Nota: None

Description:

The completion of an YO request is indicated by an event if user has specified this option
when creating the YO requests. The YO Request Completion Event process allows the
application to obtain a pointer to the 110 request completion event allowing the scheduling
of application tasks through the GPC Real Time Operating System. The Completion Event
is used to either synchronize an application task with its corresponding YO request or
periodically trigger an on-demand application task.

2.3.1.10 Process Name: Start VO Request

Inputs: VO Request Identifier

hm YO Request Start Event

Requiremenps
Reference: VO User Interface Functional Requirements, Section 2.1.3

YO User Interface Software Specifications, Section 2.2.3.2

Nota: None

Desaiptim:

Events are used to start and stop VO requests. The Start YO Request process is used to
start an 1/0 request after a periodic request has been created with the
START-ON-DEMAND option. The Start I/O Request process is also used to start
on-demand YO requests.

47

23.1.11 Process Name: Stop 40 Request

VO Request Identifier - VO Request Stop Event

40 User Interface Functional Requirements, Section 2.1.3
I/O User Interface Software Specifications, Section 2.2.3.2

Nota: None

Events are used to start and stop VO requests. The Stop VO Request process is used to
stop an 40 request after a periodic request has been created with the STOP-ON-DEMAND
option.

2.3.1.12 Process Name: VO Request Ready

Inpuis: VO Request Identifier

VO Request Completion Flag

ReqlJiRmtS
Reference:

Nota:

VO User Interface Functional Requirements, Section 2.1.3
VO User Interface Software Specifications, Section 2.2.3.1

None

Flags are used to indicate the completion of VO requests. The VO Request Completion
processing involves the setting of a flag in shared memory to notify the application that the
request has been executed and processed. The VO User Interface allows the user to read
and clear these flags.

The 40 Request Ready process reads the completion flag associated with the VO request
identifier (provided by the application). If the VO request has completed, then the flag that
is returned to the application will be set (true).

48

23.1.13 Process Name: Clear UO Request Ready

Jnw UO Request Identifier

ow- UO Request Completion Flag

UO User Interface Functional Requirements, Section 2.1.3
VO User Interface Software Specifications, Section 2.2.3.1

N d e : None

The Clear UO Request Ready procedure clears the completion flag that is associated with
the UO request identifier (provided by the application).

2.3.1.14 Process Name: UO Request Ready and Clear

Inpuls: UO Request Identifier

UO Request Completion Flag

RetpliIVIIM!IltS

Reference: VO User Interface Functional Requirements, Section 2.1.3
UO User Interface Software Specifications, Section 2.2.3.1

Note: None

Flags are used to indicate the completion of I/O requests. The VO Request Completion
processing involves the setting of a flag in shared memory to notify the application that the
request has been executed and processed. The VO User Interface allows the user to read
and clear these flags.

The YO Request Ready and Clear process reads and resets the completion flag associated
with the UO request identifier (provided by the application).

49

23.1.15 Process Name:

hnputs:

outplts

Requirements
Recgence:

Nota:

Desaiptim:

Transaction Error

Transaction Identifier

Transaction Error Flag

VO User Interface Functional Requirements , Section 2.1.2
UO User Interface Software Specifications, Section 2.2.2.4

None

The 40 Request Complet-m function performs cllain and transaction error processing. If
an error(s) occur in the execution of the I10 request, then the VO Request Completion
function sets flags in shared memory to notify the VO System Services on the CP. The
Transaction Error process checks for the occurrence of an error in a transaction by reading
the associated error flag.

The status information returned by the Transaction Error procedure is only valid after the
Read VO Request procedure has been called due to the "Double Buffering" scheme. Since
two sets of 40 buffers are used for interprocessor data communication, two sets of status
buffers are required to maintain consistent dadstatus information (each data buffer must its
own status buffer). When the Read 40 Request procedure is called, one set of data and
status buffers is written into the local memory on the CP from shared memory. The
Transaction Error procedure reads the status buffer in local memory when returning status
information to the application. As a result, the Read UO Request procedure must be called
prior to invoking the Transaction Error procedure.

50

23.1.16 Process Name: Transaction is Bypassed

Requirements
ReFerence:

Notes:

Desaiption:

Transaction Identifier

Transaction Bypassed Flag

VO User Interface Functional Requirements , Section 2.1.2
I/O User Interface Software Specifications, Section 2.2.2.4

None

The I/O Request Completion function performs chain and transaction error processing. If a
transaction was not executed because it was deselected or bypassed, then the I/O Request
Completion function sets flags in shared memory to notify the I/O System Services on the
CP. The Transaction Is Bypassed process checks whether or not a transaction is bypassed
by reading the associated status flag.

The status information returned by the Transaction Is Bypassed procedure is only valid
after the Read I/O Request procedure has been called due to the "Double Buffering"
scheme. Since two sets of I/O buffers are used for interprocessor data communication, two
sets of status buffers are required to maintain consistent datdstatus information (each data
buffer must its own status buffer). When the Read I/O Request procedure is called, one set
of data and status buffers is written into the local memory on the CP from shared memory.
The Transaction Is Bypassed procedure reads the status buffer in local memory when
returning status information to the application. As a result, the Read VO Request procedure
must be called prior to invoking the Transaction Is Bypassed procedure.

51

23.1.17 Process Name: Chain Error

Jnpues: Chain Identifier

Note:

Chain Error Flag
All Transactions are Bad Error Flag
Chain Did Not Complete Error Flag
Transaction Not Executed Flag
Network Status Flag

VO User Interface Functional Requirements , Section 2.1.2
VO User Interface Software Specifications, Section 2.2.2.4

None

The UO Request Completion function performs chain and transaction error processing. If
an error(s) occur in the execution of the VO request or a transaction(s) has not been
executed because it has been deselected or bypassed, then the VO Request Completion
function sets flags in shared memory to notify the YO System Services on the CP. The
Chain Error procedure checks for the occurrence of errors and deselectedhypassed
transactions in a chain by reading the associated status flags.

The VO Request Completion function records the status of the VO networks on which an
VO request is executed (recorded when the VO request is processed). The Chain Error
procedure returns a field to the user giving the status of the associated VO network at the
time the chain was executed.

The status information returned by the Chain Error procedure is only valid after the Read
VO Request procedure has been called due to the "Double Buffering" scheme. Since two
sets of I/O buffers are used for interprocessor data communication, two sets of status
buffers are required to maintain consistent dadstatus information (each data buffer must its
own status buffer). When the Read VO Request procedure is called, one set of data and
status buffers is written into the local memory on the CP from shared memory. The Chain
Error procedure reads the status buffer in local memory when returning status information
to the application. As a result, the Read VO Request procedure must be called prior to
invoking the Chain Error procedure.

52

23.1.18 Process Name: VO Request Has O v e m

VO Request Identifier - Number of Overruns
t

Requirements
RefeIWK!t?: VO User Interface Functional Requirements, Section 2.1.2

VO User Interface Software Specifications, Section 2.2.2.5

Notes: None

If an VO request can not be executed when its scheduling requirements have been fulfilled,
then a scheduling overrun occurs. The VO Request Has Overrun process allows the
application to determine if an overrun has occurred.

The occurrence of an overrun is detected by the Posting task (discussed in Section 3.2.1.1)
associated with the VO request. A parameter (integer number) in shared memory is updated
to reflect the occurrence (or frequency of occurrences) of an overrun. This parameter is
read from shared memory and returned to the application by the VO Request Has Overrun
process.

2.3.1.19 Process Name: Write Initial VO Request Data

Inputs: YO Request Identifier

Note:

State of the Locking Semaphore
Static and Dynamic Output Data

VO User Interface Functional Requirements, Section 2.1.2
VO User Interface Software Specifications, Section 2.2.2.1

None

The Write Initial VO Request Data procedure performs a test and set operation on the
semaphore that guards the output data buffer select variable for the VO request. If the select
region is unlocked, it selects an available buffer, unlocks the select region, and writes the
static and dynamic output data for the entire VO request into shared memory. If the buffer

53

select region is locked, the procedure continues to perform the test and set operation until
the region becomes unlocked or 100 test and set iterations pass. If 100 iterations pass and
the select region is still locked, it is assumed that a fault has caused a deadlock situation
(select region is locked but neither processor has control of it). If such a deadlock situation
occurs, the procedure disregards the semaphore, determines the available buffer, resets the
semaphore, sets the LOCKED parameter, and writes the output data.

After the output data has been written into shared memory, the output data buffer select
variable must be updated to specify the available buffer with the most current data. The
Write Initial UO Request Data procedure performs the test and set process as previously
described, and when the select region is unlocked, the buffer select variable (in shared
memory) is set equal to the buffer into which the output data was written.

2.3.1.20 Process Name: Wait Until IOP Completed

Inputs: IOP Completed Flag

YO User Interface Functional Requirements, Section 2.1.3
UO User Interface Software Specifications, Section 2.2.3.1

Notes: None

Flags are used to synchronize the UO System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the I/O request Specifications.
Alternatively, the CP must wait for the IOP to initialize the UO Services.

The Wait Until IOP Completed process allows the CP to wait until the IOP initializes the
I/O Services.

54

23.1.21 Process Name: CP Completed

hpuk None

outplts: CP Completed Flag

VO User Interface Functional Requirements, Section 2.1.3
VO User Interface Software Specifications, Section 2.2.3.1

Note: None

Flags are used to synchronize the VO System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the I/O request specifications.
Alternatively, the CP must wait for the IOP to initialize the I/O Services.

The CP Completed process sets a flag in shared memory to acknowledge the completion of
VO request creation process.

2.3.1.22 Process Name: Wait for Specification Received

Ready for New Specification Flag

Requirements
Reference: None

Note: None

Desaiptim:

The Wait for Specification Received process polls the Ready for New Specification flag
until it is set (true). The process is used to synchronize the VO System Services on the CP
and IOP during the interprocessor communication of the VO request specifications.

55

23.2 VO System Services Application Log

IOSS - APPLICATION-LOG
r

DISPLAY-ERROR-LOG x
2.3.2.1 Process Name: Log Error

Inputs: Application Log Identifier
Node Identifier
Error Test Smng
Error Description String

outpdr: Entry in Application Log

Requirements
Reference: None

Notes: None

The Log Error process logs the Application Log Identifier, Node Identifier, Error Test
string, and Error Description string in an Application Log (identified by the Log ID). An
Application Log is a 15 line cyclic log which is used to record information associated with
the application processes, VO request processing, and interprocessor communication.

56

2.3.2.2 Process Name: Display Error Log

Inpuls: Application Log Identifier - None
t

Require-6
Reference: None

Note: None

The Display Error Log process displays the contents of the Application Log which is
identified by the Application Log identifier.

57

2.4 VO User Interface Data Dictionary

Chain ID Type: The range of possible values for a chain ID (0 - Maximum Chain ID).

ID Array : A variant record type available to the applications user for the creation of arrays
of transactions or chains. The applications programmer must use this record to group
transactions into a chain and chains into an VO request.

VO Request ID Type: The range of possible values for an VO request ID (0 - Maximum
IOR ID).

YO Request Scheduling Record : A discriminate record available to the applications user
for specifying scheduling parameters for an VO request. The record always has fields
indicating the completion event, I/O request time out, and priority of the 1/0 request. The
record is discriminated on a two state variable indicating the type of VO request (on demand
or periodic). If the 1/0 request is periodic, then fields indicating its period, how it will be
started, and how it will be stopped must also be provided.

Maximum Chain ID : An integer constant which specifies the maximum number of chains.

Maximum IOR ID : An integer constant which specifies the maximum number of I/O
requests.

Maximum Transaction ID : An integer constant which specifies the maximum number of
transactions .
Periodic Scheduling Record : A discriminate record available to the applications user for
specifying start parameters for a periodic VO request. The record is discriminated on a
three state variable indicating how the periodic I/O request should be started
(Start-On-Demand, Start-After-Delay, or Start-At-Absolute-Time). If the discriminate is
S tart-After-Delay or S tart-At-Absoluteime, then information concerning the delay or
specific start time, respectively, must also be provided.

Transaction ID Type: The range of possible values for a transaction ID (0 - Maximum
Transaction ID).

Transaction Information Record : A discriminate record available to the applications user
for specifying VO parameters for a transaction. The record always has fields indicating the
destination DIU, number of output data bytes, type of output data (dynamic or static), and
local CP address of the application output data buffer. The record is discriminated on a two
state field indicating the type of transaction (input or output). If the transaction is an input
transaction, then fields indicating the number of input data bytes, maximum number of

58

errors before bypass, time out, and local CP address of the application input data buffer
must also be provided.

59

3.0 VO COMMUNICATIONS MANAGEMENT

The description of the VO Communications Management is divided into three sections:
Functional Description, Software Specifications, and Software Process Descriptions.

3.1 VO Communications Management Functional Desaiption

UO Communications Management provides the processes necessary to control the flow of
data between the GPC and the various VO networks used by the GPC. This work is
divided between two functions, VO Traffic Control and VO Low Level Utilities.

I/O TRAFFIC
CONTROL

c
The function of the VO Traffic Control includes the processing that must'be done to place
an VO request in its proper place in the priority queue of a given network and to transfer
data between shared memory and its correct location in the dual ported memory of the 10s.
In addition, the VO Traffic Control function coordinates the simultaneous execution of
chains on an VO service which has redundant networks and processes any errors detected
during the execution of the VO request.

The Low Level Utilities are responsible for congruently distributing inputs to the redundant
channels of the GPC, voting output data, and screening input data for errors. This error
processing involves error detection (including chain time out and byte count errors) and
error logging. The Low Level Utilities function is also responsible for performing the
correct physical to logical mapping'for each network on the GPC.

3.1.1 VO Traffic Control

The main responsibilities of the VO Traffic Control process are to manage the VO request
queues associated with each VO service accessible by the GPC, to cause chains in an VO
request to be executed, and to process any errors which occurred during chain execution.
Accordingly, the VO Traffic Control process is divided into three functions: Queue
Management, VO Request Execution, and VO Request Completion.

PRECEDING RAGE B L A W NOT FlEMED 61

I I/O TRAFFIC
CONTROL

I
I I I

QUEUE I/O REQUEST I/O REQUEST
MANAGEMENT EXECUTION COMPLETION

3.1.1.1 Queue Management

VO requests are conducted on an VO service. These VO services may be regional or local,
and if they are local, they may involve a set of redundant networks. A GPC can only post
VO requests to VO services to which it is connected. A list of all the VO services accessible
by a GPC is available in its local I10 database.

The Queue Management function initializes each UO service that is connected to the GPC.
The initialization of an VO service means that the network and data structures associated
with the service are initialized, the service is grown, and the tasks required by the service
are activated. Accordingly, the Queue Management process activates a Queue Manager task
for each VO service, schedules a Posting task for each VO request, and constructs a set of
priority queues for each Queue Manager task.

The primary role of the Queue Management process is to mate and manage a set of priority
queues for each VO service in the local database. Each priority queue holds a prioritized list
of service requests (e.g. a network restoration request, spare element cycling request, or
VO request) for that VO service. The Queue Management process must provide a way to
post a service request to an VO service, to supply the next service request which should
execute on that service, and to indicate that no requests are pending.

The Queue Management process activates an VO Posting task for each VO request created
by the application. A Posting task is a task that is scheduled on the IOP based on the
scheduling requirements of the VO request. When the scheduling requirements of the VO
request are met, the Posting task posts a service request to the correct priority queue of the
appropriate VO service.

A Queue Manager task is activated for each VO service. This task controls all access to the
VO service. If I/O requests are pending, the Queue Manager task accepts the VO request
with the highest priority, invokes the VO Request Execution function, and calls the VO
Request Completion process. If a fault in an VO network causes errors to occur in the VO
request, then the Queue Manager task takes the appropriate network out of service and calls

62

the network manager FDIR. If no 40 requests are pending, then the Queue Manager can
accept service requests to cycle the spare components of the VO service. In addition, the
Queue Manager task controls the modification of the IlO chains (transaction
selection/deselection) and the restoration of failed network elements.

3.1.1.2 YO Request Execution

Each I/O service requires a Queue Manager task to control the execution of VO requests on
that service. Whenever an VO service is "ready" or "idle" and any VO requests have been
posted to that service, the Queue Manager task will begin to process the pending VO
request which has the highest priority.

When an I/O request has just completed on a service, that service is designated as "ready";
that is, ready to begin another VO request. If one or more VO requests are pending at that
service, the request with the highest priority will be started as soon as the service becomes
ready. However, if no request is pending at a service when it becomes ready, the 1/0
service is considered "idle". An I/O request which is posted to an idle VO service will be
started immediately. This scheme is intended to achieve a high degree of YO service
utilization by eliminating unnecessary delays in starting I/O request execution.

A

An VO service may utilize only one network or it may require a set of parallel redundant
networks. Within each service, a given network may be in or out of service. Typically, a
network will be out of service for one of two reasons: it has not yet been grown by its
network manager or a fault(s) exists in the network causing it to be pulled out of service to
allow FDIR activity to proceed. While a network is out of service, user chains will not be
executed on the network but manager chains, of course, will be allowed. If the service is
not redundant, user chains will not be executed until the network is back in service.
However, if the service is redundant, the unfailed networks will remain in service while
FDIR is conducted on the network which experienced errors. Thus, user chains in the
unfailed networks will continue to execute at their normal rate, unimpeded by the repair
activity of the FDIR processes. This scheme is intended to provide an application with an
uninterrupted flow of VO data even in the presence of hardware faults (when a redundant
VO service is part of the system).

Another aspect of VO Request Execution is updating, whenever necessary, the chain
program or set of redundant chain programs in dual ported memory. This is necessary to
support the transaction selection/deselection option open to a user and the transaction
bypassing feature available to the VO System Services. The VO System Services may
bypass a particular transaction if it is repeatedly the source of errors and the application
allows that transaction to be bypassed.

To bypass or deselect a transaction, the chain program is modified so that the 10s will skip
over the set of instructions used to execute the deselected transaction. To select a

63

transaction, the chain program is modified so that the 10s will not skip the relevant set of
instructions. A chain program consists of a header and a linked list of transactions. The
header contains instructions that affect the entire chain such as the polling priority and
number of residual bits, and it ends with a branch instruction to the first transaction of the
chain. Each transaction in the linked list is a sequence of 10s instructions which ends with
a branch instruction to the first instruction of the next transaction or to an end of chain
program (which causes the 10s to get ready for another command from the interface
command register). To deselect a specific transaction N, the operand of the branch
instruction of the transaction that precedes transaction N is modified to point to the
transaction that succeeds transaction N. To select a specific transaction N, the operand of
the branch instruction of the transaction that precedes transaction N is modified to point to
transaction N, and the operand of transaction N's branch instruction is set equal to its
preceding transaction's branch operand.

Another function of VO Request Execution process is the transfer of output data from
shared memory to dual ported memory (DPM) of the 10s. The output data for a
transaction must be written to the DPM of the 10s prior to the execution of the command
frame of the transaction, that part of a transaction which carries data from the GPC to the
DIU. Command frames may be static or dynamic. Data for static command frames are
updated only once, whereas data for dynamic command frames are updated each time the
chain executes. When a chain contains only static command frames, the entire chain is
designated as having static output. This designation saves processing time since each
transaction does not need to be tested to determine whether or not it contains a dynamic
command frame. Similarly, when a chain contains only dynamic command frames, the
entire chain is designated as having dynamic output. Again, processing time is saved,
since the data transfer can take place without a test of whether or not a transfer is necessary.
Chains with both dynamic and static command frames are designated as mixed. This type
of chain requires additional processing time and, where performance is a factor, should be
avoided.

Once the output data and chain program for all the chains in the VO request have been
updated, the 10s is commanded to start the chains by means of a word written to the
interface command register (ICR) of the 10s. In the case of redundant chains, this
command must be written to more than one ICR and should be performed with the shortest
possible delay between writes. If possible, the commands should be written
simultaneously. If not, they should be written with consecutive machine instructions from
the GPC. After starting the chains in the VO request, the VO Request Execution process is
complete.

64

3.1.13 YO Request Completion

I
INPUT SOURCE
CONGRUENCY

The VO Request Completion function is triggered after the VO request time out (the length
of time that the I/O request actively possesses an VO network or networks during its
execution) has expired. This processing involves chain completion processing for each
chain of the VO request. Chain completion processing entails chain error processing, chain
error logging, transaction error processing, transaction error logging, and the transfer of
transaction input data from DPM to shared memory. After the completion processing for
the VO request is finished, the application is signalled that the VO request has completed
and the data in shared memory is readable.

I
ERROR

PROCESSING

3.1.2 VO Low Level Utilities

The UO Low Level Utilities perform source congruency and error detection on inputs from
external devices and consistent error free outputs to external devices. They are also
responsible for the mapping of physical to logical devices (nodes, links, DIUS) and the
assurance that a consistent network database exists for each VO network attached to the
GPC. The VO Low Level Utilities are made up of four functional modules: Input Source
Congruency, Output Voting, Error Processing, and Database Operations.

(I/O LOW LEVEL 1
UTILITIES \

DATA BASE
OPERATIONS

The VO Low Level Utilities are used by both the VO Redundancy Management and VO
Communications Management. They record and report communication errors to both
functions.

65

3.2 The YO Communications Management Software Specifications

As specified in Section 3.1, the VO Communications Management is divided between two
functions: VO Traffic Control and VO Low Level Utilities.

The VO Traffic Control process is responsible for allocating and initializing the tasks that
control the processing of the VO requests. These tasks include the Posting tasks, priority
queue processes, and Queue Manager tasks. The VO Traffic Control function is also
responsible for initializing the VO services, executing the VO requests, and VO Request
error processing.

The I/O Low Level Utilities are responsible for supporting source congruency on the
inputs, voting on the outputs, and fault masking.

3.2.1 YO Traffic Manager

As previously discussed in the I/O Communications Management Functional
Requirements, the VO Traffic Manager is divided into three sections: Queue Management,
VO Request Execution, and I/O Request Completion. The VO Queue Management process
is responsible for initializing the VO services, activating the Posting tasks, and managing
the priority queues. The VO Request Execution function is responsible for execution of the
chains of the VO requests, while the VO Request Completion function is responsible for the
error piocessing and logging required by the VO requests.

3.2.1.1 Queue Management

The Queue Management process accesses the local VO database to determine the VO
services to which the GPC is connected. A Queue Manager task is allocated for each VO
service, and each task initializes its corresponding VO service. The initialization of an VO
service involves the initialization of the IOSes, VO networks, and priority queues of the
service. The Queue Manager task loads the dual ported memory of the IOSes with the VO
chains and output data specified by the application. The task then waits for the associated
VO network Managers to grow the VO networks of the service. After the networks are
active (the state of each network is "in-service") and all of the 40 request specifications
have been communicated to the IOP, the Queue Manager constructs and initializes the
priority queues. In addition, it schedules the Spare Link Cycling task (if enabled by the
application) and activates the Posting tasks. When the VO service has been initialized, the
Queue Manager sets a flag in shared memory to notify the VO System Services on the CP.

The initialization of an 10s involves partitioning the program region of the 10s into a
header section and a linked list of transaction modules. Each transaction section of the 10s
is used by only one chain, whereas the header section is used by all chains. The
initialization of the 10s program region entails the linking of the transaction sections to

66

make the chains. The linking of the transactions is accomplished by modifying each
transaction's branch instruction to point to the next transaction in the chain or to the end of
the chain program.

The VO requests are assigned a priority of 0 through 7 (where priority 0 is the lowest and
priority 7 preempts priorities 0 through 6). An VO request priority queue is constructed to
control the processing of the VO requests. The number of records in the queue is equal to
the number of VO requests that are created by the application for the VO service. Each
record has three fields: the VO request ID, a boolean flag which indicates whether or not the
scheduling requirements for the request have been met, and a pointer to the next record in
the queue. The VO request priority queue is a linked list of VO request records and its
ordering is based on the priorities of the VO requests (the highest priority request is first,
the lowest last, etc.).

The Queue Manager task must manage three queues of service requests for the VO service.
These queues are the VO request priority queue (previously described), spare component
cycling queue, and restoration queue. The Queue Manager task accepts service requests
posted to each queue, removes service requests for processing, and indicates when a
priority queue is empty. In addition, the task determines the next service request to be

The Queue Manager determines the request to be serviced in the following

Process any preempted VO requests.
Process the highest VO request pending.
If an VO request with a priority of 0 - 6 is being processed and an VO request
with a priority of 7 is posted, preempt the request being executed and process
the priority 7 request.
If no VO requests are pending and a cycle spare link command is posted, cycle
the spire link.
If a spare link is being cycled and an VO request is posted, preempt the cycling
request and process the 40 request.
If no 40 requests are pending and a restore element command is posted,
restore the network element.

Each VO request that is created by the application has a corresponding Posting task that
executes on the IOP. A Posting task is a task that is scheduled through the GPC Real Time
Operating System based on the scheduling requirements of the VO request. The Posting
task is activated by the Queue Manager task during initialization and is blocked until its
scheduling requirements of the VO request are met. When scheduling requirements have
been fulfilled, the Posting task sets an execution flag in the VO request priority queue and
calls the Queue Manager task (posts a service request). The task is then blocked until the
Queue Manager task accepts the service call. After the VO request has been accepted, the
Posting task checks to see if an overrun has occurred, updates the overrun parameter in

67

shared memory to reflect the number of overruns that have occurred, and loops back to
again wait for scheduling requirements of the VO request to be met.

After the priority queue process and posting tasks have been initialized, the Queue Manager
task waits until a service request is posted. When more than one service request is
pending, the task determines the next service request to be processed. If the service request
accepted is an VO request, the Queue Manager task invokes the VO Request Execution
function to execute the request and the VO Request Completion function to process the
corresponding input response (if necessary). Alternatively, if the service request accepted
is a spare component cycling or restore command, the associated I/O network (or
networks) is taken out of service and the corresponding network manager(s) is called to
execute the request.

-

33.13 VO Request Execution

The VO Request Execution function is invoked by the Queue Manager task after an VO
request sent to the VO service has been accepted. An VO service may utilize one network
or a set of parallel redundant networks. Each network is either in-service,
temporarily-out-of-service, repaired, or permanently-out-of-service. The network is
in-service during no fault operation. The network is temporarily-out-of-service when the
network FDIR is invoked, while network components are restored, or during spare
component cycling. The network is repaired after the network FDIR has completed, a
network element has been restored, or a spare component has been cycled. The network is
permanently-out-of-service when it is unreachable from the GPC. The network is set to
in-service from repaired and to temporarily-out-of-service from in-service by the Queue
Manager task. The network is set to repaired (or permanently-out-of-service) from
temporarily-out-of-service by the network manager tasks. If the network is in-service or
repaired, the chains can be executed on the network whereas, if the network is
out-of-service (either temporarily or permanently), they can not be executed on the
network.

The control flow of the VO Request Execution function (along with the VO Request
Completion function) is illustrated in the Figure 11. The bold path depicts the no fault
control path.

The VO Request Execution function initially checks the transaction selectionldeselection
shared memory flags to determine if there are any transactions to be selected or deselected.
If either of the flags is set, the Request Execution function follows the selectionldeselection
procedure outlined in Section 2.2.2.3. If the flag is not set, then the function begins
processing the VO request.

68

CHECKFOR TRANSACTION SELECTIO~JILECTION

WRITE OUTPUT DATA To ALL CHANNELS

c
CHECK CHANNEL CONFIGURATION

%\FAJzm SWITCHROOTLINK &w"."+"--%, >\, ',

1
!RARTI/O REQUEST

CHECK CHANNEL CONFIGURATION '

'> FAILED
9

...*J ..* ..-. ...*.' ..\ "..,

(VO REQUEST EXECUTION)
2% (VO REQUEST COMPLETION)

WAITUNTILVOREQUEST
HAS COMPLETED EXECUTION~%~~..................................

".,,
..--\ CHAIN

COMPLETELI
',& CHAIN

CHECK CHANNEL CONFIGURATION
'&.. ,I DID NOTCOMPLETE

"..
.Y. *,. FAILED '%

a "k 'a
SWlTCH ROOT LINK CHECK CHANNEL CONFIGURATION

t
%,,

\,

".,<,\ FAILED

WRlTE DATA TO
SHARED MEMORY

FROM 10s

., "..*.
SWITCH~~OOTLINK \ CHECK CHANNEL CONFIGURATION

PROCESS DATA ROOTLINKSWlTCH

Figure 11. Control Flow for UO Request Execution and Completion

69

The processing of the VO request begins with the loading of the IOSes of the VO service
with the dynamic output data (both the static and dynamic data must be written if the VO
request is being executed for the first time). To write the output data to the DPM of the 10s
from shared memory, the VO Request Execution process performs a test and set operation
on the semaphore that guards the output data buffer select variable for the VO request. If
select region is unlocked, the procedure selectsbocks the available buffer, unlocks the select
region, calculates a sumcheck over the data, and writes the output data and sumcheck to the
10s. If the buffer select region is locked, the procedure continues to perform the test and
set operation until the region becomes unlocked or 100 test and set iterations pass. If 100
iterations pass and the select region is still locked, it is assumed that a fault has caused a
deadlock situation (region is locked but neither processor has control of it). If such a
deadlock situation occurs, the procedure disregards the semaphore, determines the available
buffer, resets the semaphore, calculates the sumcheck, and writes the output data and
sumcheck to the 10s.

After the output data has been written from shared memory to IOS, the output data buffer
select variable must be updated to unlock the output data buffer. The I/O Request
Execution process performs the test and set process as previously described, and when the
select region is unlocked, the buffer is unlocked by modifying the select variable in shared
memory.

After the output data buffer is unlocked, the channel configuration is checked to see if the
channel(s) executing the VO request is on-line. If the channel is not on-line, the root link is
switched until either an active root link is found or the corresponding network(s) is
determined to be unreachable. If the channel is on-line, the VO request is prepared for
execution by setting up each chain of the VO request. The set up procedure involves
several steps:

a) The modification of the branch instruction of the header to point to the first
transaction of the chain.

b) The modification of the poll instruction in the header of the chain to start
immediately if the associated network is local or start with a poll otherwise.

c) Clear the Chain Status Register.
d) Set the Solicited Chain Pointer of the 10s to point to the header of the chain.

After the completion of the chain setup procedure, the chains of the 40 request can be
executed. To execute a chain, an execute command is written to the Interface Command
Register (ICR). In the case of two redundant chains, the execution commands are written
in consecutive machine instructions. In the case of three or more redundant chains, the
commands are written in a "tight" machine instruction loop.

As previously discussed in Section 3.2.1.1, VO requests with a priority of 7 preempt lower
priority VO requests. A check for pending priority 7 requests is made before the output
data for an VO request is written to the 10s. In addition, a similar check is performed

70

prior to the VO request being executed. If a priority 7 VO request is pending and a lower
priority request is being processed, the state of the lower priority request is saved, the
request is suspended, and the pending request is processed. When the processing of the
priority 7 VO request has completed, the state of the preempted request is restored and
processing of the request is continued. .
During the execution of an VO request, the VO request must actively possess the network
for a specific amount of time; that is, the VO request time out. Accordingly, the Queue
Manager must wait for the VO request time out to expire before it can invoke the I/O
Request Completion function.

3.2.13 YO Request Completion

The control flow for the VO Request Completion function is illustrated in Figure 11.
Initially, the VO Request Completion function checks the channel configuration and the
chain complete bit of the Chain Status Register. If the configuration check detects that the
channel has failed, then the root link is switched. If the channel is on-line and the chain did
complete, then the input data returned by the UO request is written into shared memory
from the DPM of the 10s (using a process similar to the Write UO Request procedure -
Section 2.3.1.6).

After the input data has been written to shared memory, the channel configuration is again
checked. If the configuration check detects that the channel is down, then the active root
link is switched. If the channel is on-line, then the data is processed for errors. The error
detection process (I/O Low Level Utilities) checks for transmission, byte count, and
sumcheck errors. The error logging process sets shared memory flags to notify the
application of any chain and/or transaction errors that result. If any errors are detected, the
channel configuration is checked and the data exchange tests are performed.

To support the VO request preemption capability, a check for priority 7 requests is made
before the input data is written to shared memory. If a priority 7 VO request is pending and
a lower priority request is being processed, the state of the lower priority request is saved,
the request is suspended, and the pending request is processed. When the processing of
the priority 7 I/O request has completed, the state of the preempted request is restored and
processing of the request is continued.

After the error processing has been completed, the VO completion flag for the VO request is
set. In addition, if the application selects the completion event option during the creation of
the VO request, the VO completion event is signalled.

71

3.22 I/O Low Level Utilities

As discussed in Section 3.1.2, the VO Low Level Utilities is made up of four functional
modules: Input Source Congruency, Output Voting, Error Processing, and Database
Operations.

The Input Source Congruency function is implicitly preformed by the shared data exchange
hardware.

The Output Voting is performed by writing data (bytes or words) into a data exchange
transmit register (see [l] for a detailed description). The VO Communications Management
and Redundancy Management processes use this register to vote all output data written to
the IOSes.

The Error Processing capabilities of the GPC are used to determine VO network errors. I/O
network errors are determined by analyzing status information returned by the network
nodes. This error information is used by the I10 Communications Management and
Redundancy Management functions.

The Database Operation function is used by the VO Communications Management and I/O
Redundancy Management function to access information in the VO database concerning the
VO services supported by the GPC site. It is responsible for the mapping of physical to
logical devices (nodes, links, DIUS) and the assurance that a consistent network database
exists for each VO network attached to the GPC.

72

3 3 YO Communications Management Software Process Descriptions

The 1/0 Communications Management Software Process Descriptions divide the
description of the VO Communications Management into functional packages. This section
uses Booch diagrams and process descriptions to present the Software Specifications in
more detail. The Booch diagrams are used to map the UO Communications Management
Software Specifications into functional packages, tasks, and subprograms. The process
descriptions are used to describe these functional groups in detail.

The VO Communications Management is divided into ten functional packages:

1) UO System Services Queue Manager
2) VO System Services IOP Construct UO Requests
3) VO System Services IOP Main Initialization
4) VO System Services Communication of Specifications Task
5) VO System Services Posting Tasks
6) UO System Services IOP Powerup
7) VO System Services Global Memory Utilities
8) VO System Services Shared Memory Allocation
9) VO System Services Dual Ported Memory Map
10) VO System Services Private ID Types

73

33.1 YO System Services Queue Manager

IOSS_QUEUE_MGR
7

RESTORE-NODE-OR-LINK

QUEUE-MGR-TASK

UPD ATE-10s-AFX'ER-RERE

I

I
~

1 DPM-TO-SM-XHK I

=CHECK-FOR-COMM-ERRORS I
I PROCESS-IOR-CALL I

I

I EXEC-IOR-CALL 1

I UPLO AD-IOR-C ALL I

I

I ADD-TO-LIST 1
I

INITIALIZE-IOR-QUEUE I 2 DETERMINE-NEm-IOR

74

3.3.1.1 Process Name: Restore Node or Link

Inputs:

Note:

VO Network Identifier
Node Identifier
Port Identifier
Type of Restoration

Confurnation that Restoration was Accepted
Restoration Service Request

VO Communications Management Software Specifications,
Section 3.2.1.1

None

The Restore Node or Link process posts a restoration service request to the Queue Manager
task. Initially, the process determines if the request is to restore a node or link. Next, the
service request is posted to the restoration priority queue. If the Queue Manager is not
processing a different service request, the restoration request is accepted and processed. If
the Queue Manager is processing a different service request, the restoration request is
retracted. The service request is retracted to avoid the possibility of the Restore Node or
Link process being endlessly blocked if the Queue Manager is busy processing other jobs
(restoration is a low priority job). If the service request is retracted, the process delays for
one second and resubmits the request. If the Queue Manager can not accept the second
request, the process delays again for a second time and then resubmits the request a third
time. If the third request is not successful, then the Restore Node or link process notifies
the calling process that the restoration was not accepted. If the restoration request was
accepted in one of the three tries, then the process notifies the calling process that the Queue
Manager accepted the request.

75

33.1.2 Process Name: Queue Manager

In-

&-

ReqUh?XIlentS
Reference:

Nota:

r/o Request Hierarchical Database
VO Network Identifier
VO Transaction Identifier
I/O Request Output Data
UO Transaction Selection 01: Deselection Record
VO Network Restoration Record
C m n t Channel
Network State
Channel Configuration
YO Service Configuration

VO Network Identifier
Network State
I/O Request Errors
VO Request Input Data
Current Channel
Connected Networks
VO Network Restoration Record
10s DPM Address Pointer
VO Transaction Identifier

VO Communications Management Functional Requirements,
Section 3.1.1
VO Communications Management Software Specification,
Section 3.2.1.1

None

The Queue Manager task is a process that controls the Queue Management, VO Request
Execution, and 40 Request Completion functions associated with a particular VO service.
The Queue Management function constructs and manages a set of priority queues and
initializes the I/O service. The I/O Request Execution function writes the dynamic output
data from shared memory to the appropriate IOSes, updates the chain headers, and executes
the VO request. The VO Request Completion function checks for the occurrence of errors
and writes the input data from the DPM of the 10s to shared memory.

76

.

.

The Queue Manager task is blocked until the I/O System Services on the CP has
communicated all of the I/O request specifications to the IOP and the companion VO request
records have been constructed. The task then constructs an VO request priority queue
using the priorities assigned to the requests. The VO requests with the higher priorities are
placed closer to the front of the queue whereas those with the lower priorities are placed
nearer to the bottom.

After the VO request priority queue is created, the Queue Manager task creates the priority
queues (FIFO) for the spare link cycling and restoration processes. In addition, the VO
chains are constructed, and the spare link cycling task is scheduled. The construction of
the VO chains involves the modification of branch instructions to link the transaction
program modules into a chain module. This procedure also initializes the VO data pointers
and output data buffers. The spare link cycling task is scheduled as a background task, and
it periodically posts a reconfiguration service request to the VO service.

The VO requests can not be scheduled until the VO networks associated with the I/O service
are grown. The growth of the VO networks is performed by the 110 Network Managers,
and the Queue Manager waits until these I/O networks are in-service. After the growth of
the networks is complete, the Queue Manager task schedules an VO Posting task for each
VO request created by the application. The Posting task is scheduled on the IOP in the
manner specified by its corresponding VO request. When the scheduling requirements of
an VO request have been met, the associated VO Posting task sets an execution flag in the
VO request priority queue and calls the Queue Manager task (posts a Service request).

After the VO Posting tasks have been scheduled, the Queue Manager task sets a flag to
notify the CP application tasks that the initialization of the I/O service has completed. At
this time, the application tasks can start any on demand VO requests.

The Queue Manager task controls access to the VO service. Several processes contend for
the service. These processes are:

1) The execution of an VO request.
2) The cycling of a spare link.
3) The restoration of a node or link.

Each of the contending processes posts a service request to its associated queue when its
scheduling requirements have been fulfilled. The service request to be next processed by
the Queue Manager task is selected based on priority scheme described in Section 3.2.1.1.

If an VO request is accepted by the Queue Manager task, then the VO Request Execution
function is called to process the request. The processing of an VO request involves several
steps. Initially, a check is made to determine if there are any transactions to be selected or
deselected. Secondly, the dynamic output data is written from shared memory to the DPM
of the IOSes (the static output data is also written if the VO request has not been previously
executed) and the chain headers are initialized to point to the first transaction of the 40

77

chains. After the headers have been updated, the VO request is executed. The VO request
is started by writing a command to the Interface Command Register (ICR) of an 10s. In
the case of two redundant chains, the execution instructions are written in consecutive
machine instructions to two IOSes. In the case of three or more simultaneous chains, the
commands axe written in a tight machine instruction loop (to multiple IOSes) to minimize
the delay between the writes while allowing the flexibility of variable size VO requests.
After the 40 request execution has started, the Queue Manager task waits until the VO
request time out has expired. At this time, the Queue Manager task invokes the VO Request
Completion process to perform error checking (byte count, transmission, and sumcheck),
notify the application of the occurrence of errors, bypass the transactions which have
exceeded their maximum error limitations, invoke the network FDIR (if necessary) and -
write the input data from the DPM of the IOSes to shared memory. After the input data has
been written, the processing of the VO request is finished, and the Queue Manager task
notifies the associated CP application of the completion of the VO request using a
completion event and/or flag.

The processing of a spare link cycling service request involves two steps: the collection of
node status from the VO networks of the VO service and the reconfiguration of the virtual
circuit path if there are not any errors in the networks. The collection of node status
information is required to determine if all of the expected network nodes are reachable prior
to reconfiguration. If one or more of the nodes does not send its status or sends
inconsistent status (inconsistent with the VO network topology database), then a network
fault is assumed to exist. If a fault is present in a network, the network is taken out of
service and a repair request is sent to the associated VO Network Manager task. In the case
of redundant networks, this status collection is performed in near simultaneous manner
similar to the execution of simultaneous VO chains. If there are not any errors in the VO
service, then a spare link of each VO network is made active by reconfiguring the virtual
path. If redundant networks are involved, the reconfiguration is performed in near
simultaneous manner.

The processing of a network element (link or node) restoration service request involves
sending a restore request to the appropriate VO Network Manager task.

The Queue Manager accepts service requests from the contending processes until it is
descheduled.

78

33.1.3 Process Name: Update 10s After Channel Restoration

u Restore 10s Data Flags

Requimmts .
Reference: VO Communications Management Software Specifications,

Section 3.2.2

Nota: None

Description:

The Update 10s After Channel Restoration process sets the Restore 10s Data flags to
notify the Queue Manager that the static output data for the VO requests must be restored.
The loss of a channel due to a fault may cause the data in the 10s to be corrupted. Since
the static data is not updated each time an VO request is processed, the data must be updated
when the channel is restored.

3.3.1.4 Process Name: Shared Memory to DPM with Sumcheck

Inputs:

Notes:

Desaiption:

Chain Identifier
User Program and Data Pointer
Output Data

Value of Lucking Semaphore
Voted Output Data
Voted Sumcheck
Voted Number of Data Bytes

VO Communications Management Software Specifications,
Section 3.2.1.2

None

The Shared Memory to DPM process updates output buffers of the DPM of the IOSes.
The output data has been written into shared memory by the application. The process
updates the dynamic output data each time a chain is executed. The process updates the

79

static output data prior to the first execution of the chain and after a chain error has
O C C d .

The Shared Memory to DPM process performs a test and set operation on the semaphore
that guards the output data buffer select variable for the VO request. If select region is
unlocked, the procedure selects/locks the available buffer, unlocks the select region,
calculates a sumcheck over the data, and writes/votes the output data and sumcheck to the
10s. If the buffer select region is locked, the procedw continues to perform the test and
set operation until the region becomes unlocked or 100 test and set iterations pass. If 100
iterations pass and the select region is still locked, it is assumed that a fault has caused a
deadlock situation (region is locked but neither processor has control of it). If such a
deadlock situation occurs, the procedure disregards the semaphore, determines the available
buffer, resets the semaphore, calculates a sumcheck over the data, and writes/votes the
output data and sumcheck to the 10s.

After the output data has been read from shared memory, the output data buffer select
variable must be updated to unlock the output data buffer. The Shared Memory to DPM
process performs the test and set procedure as previously described, and when the select
region is unlocked, the buffer is unlocked by modifying the select variable in shared
memory.

3.3.15 Process Name: DPM to Shared Memory with Sumcheck

Inputs:

Requimmts
Referenoe:

N d a :

Chain Identifier
User Program and Data Pointer
Input Data

Value of Locking Semaphore
Array of Transaction Data Sumchecks
Input Data

I/O Communications Management Software Specifications,
Section 3.2.1.2

None

The DPM to Shared Memory process reads input data from the DPM of the IOSes and
updates the shared memory input data buffers. The input data is the response from a DIU
to a request given by the application. The process updates the shared memory input data
buffers each time an input response from an I/O request is received.

The DPM to Shared Memory process performs a test and set operation on the semaphore
that guards the input data buffer select variable for the UO request. If the select region is
unlocked, it selects an available buffer, unlocks the select region, calculates a sumcheck
over the data, resets the Old Data flag (notifying the CP that the input buffers have been
updated since the previous data read), and writes the input data for the entire UO request
into shared memory. If the buffer select region is locked, the procedure continues to
perform the test and set operation until the region becomes unlocked or 100 test and set
iterations pass. If 100 iterations pass and the select region is still locked, it is assumed that
a fault has caused a deadlock situation (select region is locked but neither processor has
control of it). If such a deadlock situation occurs, the procedure disregards the semaphore,
determines the available buffer, resets the semaphore, calculates a sumcheck over the data,
resets the Old Data flag (notifying the CP that the input buffers have been updated since the
previous data read), and writes the input data to shared memory.

After the input data has been written into shared memory, the input data buffer select
variable must be updated to specify the available buffer with the most current data. The
DPM to Shared Memory process performs the test and set procedure as previously
described, and when the select region is unlocked, the buffer select variable (in shared
memory) is set equal to the buffer into which the input data was written.

3.3.1.6 Process Name: Setup Chain

Requirements
Ref-:

Chain Identifier
User Program and Data Pointer
DPM Program Pointer

10s Solicited Chain Pointer
Chain Header Branch Instruction
10s Poll Instruction

Nota: None

VO Communications Management Software Specifications,
Section 3.2.1.2

The Setup Chain process sets up the chain header section of the user program region in
preparation for the execution of the chain. The process involves several steps:

81

a) The modification of the branch instruction of the header to point to the first
transaction of the chain.

b) The modification of the poll instruction in the header of the chain to start
immediately if the associated chain is local or start with a poll otherwise.

c) Clear the Chain Status Register.
d) Set the Solicited Chain Pointer of the 10s to point to the header of the chain.

3.3.1.7 Process Name:

Inputs: VO Request Identifier

oum 10s Interface Command Register

Execute VO Request

Requi~mt?IltS
Reference: I/O Communications Management Software Specifications,

Note:

Desaiptim:

Section 3.2.1.2

None

The Execute VO Request process executes the VO request after tle output data buffers have
been updated. To execute a chain, an execute command is written to the ICR of an 10s. To
execute the simultaneous chains, execute commands are written to multiple ICRs with a
minimal delay between the writes.

After the execute commands are written, the process waits until the VO request time out has
expired.

82

.

33.1.8 Process Name:

NdeS:

Desaiption:

Check for Communication Errors

User Data and Program Pointer
DPM Program Pointer
Array of Data S umchecks
Chain Identifier
Active Root Link

Error in Chain Flag
Shared Memory Error Flags

VO Communications Management Software Specifications,
Section 3.2.1.2

None

The Check for Communication Errors process determines if an error(s) occurred during the
execution of a chain and if so, it isolates and logs the type and location of the error(s). The
process checks for the following types of errors:

Channel failure during chain execution.
Chain did not complete execution.

1)
2)
3) Transmission Errors.
4) Byte count errors.
5) Sumcheck errors.

The Check for Communication Errors process updates several shared memory flags to
notify the application of the occurrence and type of errors. The process also determines if a
transaction should be bypassed.

If a response from a DIU has been corrupted by errors and the DIU is reachable, then the
Check for Communication Errors process calls the associated I/O Network Manager
process to repair the network (except for sumcheck errors).

83

3.3.1.9 Process Name: Process VO Request Procedure call

Requirements
Reference:

YO Request Identifier
UO Request Output Data
10s Status Registers
Network Status

Completion Flag
Completion Event
UO Request Input Data

I/O Communications Management Software Specifications,
Section 3.2.1.2

Nota: None

The Process VO Request procedure performs the I/O Request Execution and VO Request
Completion functions, as discussed in VO Communications Management Functional
Requirements and Software Specifications. In short, the process performs the following:

1) Checks for a transaction selectioddeselection request.
2) Writes the output data from shared memory to DPM.
3) Sets up the chain header(s) for the VO request.
4) Executes the VO request.
5) Writes the input data from DPM to shared memory.
6) Checks for communication errors.
7) Notifies the application of the completion of the VO request via event and/or

flag.

84

3.3.1.10 Process Name: Execute VO Request Procedure Call

- Requirements
Refgence.

Notes:

I/O Request Identifier
10s Status Registers
Network Status

Completion Flag
Completion Event
VO Request Input Data

VO Communications Management Software Specifications,
Section 3.2.1.2

None

During the processing of an I/O request, checks are made to determine if the VO request
being processed should be preempted. The VO request should be preempted if its priority
is between 0 and 6 and a priority 7 I/O request is pending. If an VO request is preempted,
its state is recarded to avoid unnecessary reprocessing. The Execute VO Request procedure
is invoked when an I/O request is preempted before the it is executed. In short, the process
performs the following:

1) Sets up the chain headexfs) for the I/O request.
2) Executes the VO request.
3) Writes the input data from DPM to shared memory.
4) Checks for communication errors.
5) Notifies the application of the completion of the VO request via event and/or

flag.

85

3.3.1.11 Process Name: Upload VO Request Procedure Call

Requirements
R&enCe:

Nota:

VO Request Identifier
10s Status Registers
Network Status

Completion Flag
Completion Event
VO Request Input Data

VO Communications Management Software Specifications,
Section 3.2.1.2

None

Description:

During the processing of an VO request, checks are made to determine if the VO request
being processed should be preempted. The VO request should be preempted if its priority
is between 0 and 6 and a priority 7 VO request is pending. If an VO request is preempted,
its state is recorded to avoid unnecessary reprocessing. The Upload 40 Request procedure
is invoked when an VO request is preempted before the input response from the VO request
is processed. In short, the process performs the following:

1) Writes the input data from DPM to shared memory.
2) Checks for communication errors.
3) Notifies the application of the completion of the VO request via event and/or

flag.

86

3.3.1.12 Process Name: Spare Link Test

ReqlJimrne!ilts
Ref-:

Notes:

Desuiption:

Spare Link Test Count
Channel Configuration
VO Service Database
Network Status
10s Status Registers

None

VO Communications Management Software Specifications,
Section 3.2.1.1

None

The Spare Link Test process controls the cycling of the spare links of the network(s) of an
VO Service.

The Spare Link Cycling procedure involves two steps: the collection of node status from
the VO networks of the VO Service and the reconfiguration of the virtual circuit path if there
are not any errors in the networks. The collection of node status information is required to
determine if all of the expected network nodes are reachable prior to reconfiguration. If one
or more of the nodes does not send its status or sends inconsistent status (inconsistent with
the VO network Topology database), then a network fault is assumed to exist. If a fault is
present in a network, the network is taken out of service and a repair request is sent to the
associated I/O Network Manager task. In the case of redundant networks, this status
collection is performed in near simultaneous manner similar to the execution of
simultaneous VO chains. If there are not any errors in the VO Service, then a spare link of
each VO network is made active by reconfiguring the virtual path. If redundant networks
are involved, the reconfiguration is performed in near simultaneous manner.

87

33.1.13 Process Name:

Inpds:

Note:

Desaiption:

Initialize 'VO Service

Connected Networks
Network State

None

VO Communications Management Software Specifications,
Section 3.2.1.1

None

The Initialize VO Service process initializes the VO Service associated the Queue Manager
task. The process involves constructing the user chains in the IOS, scheduling the spare
link testing task, waiting for the networks to be grown by the VO network managers, and
scheduling the Posting tasks.

3.3.1.14 Process Name:

Inputs:

ouw

Requirrments
Reference:

Nota:

Desaiption:

Add to List

VO Request Identifier

VO Request Priority Queue

VO Communications Management Software Specifications,
Section 3.2.1.1

None

The Add to List process adds the designated VO request to the VO request priority queue.
The position of the VO request in the queue depends on the priority assigned to it by the
application. The I/O request priority queue is used to determine the next service request to
be processed.

88

33.1.15 Process Name: Initialize VO Request Queue

Inpix VO Request Identifiers

* VO Request Priority Queue

Requirements
Refgence:

Nota:

VO Communications Management Software Specifications,
Section 3.2.1.1
None

The Initialize UO Request Queue process initializes the UO request priority queue by
ordering the VO requests and invoking the Add to List procedure for each request. The
position of the 1/0 request in the queue depends on the priority assigned to it by the
application. The VO request priority queue is used to determine the next service request to
be processed.

3.3.1.16 Process Name: Determine Next VO Request

Inpub: VO Request Priority Queue

Requirements
ReFerence:

VO Request Identifier
Queue Empty Flag

VO Communications Management Software Specifications,
Section 3.2.1.1

Nota: None

The Determine Next VO Request process determines which pending VO request should be
next processed. The process parses the VO request priority queue and returns the first
pending request to the Queue Manager for processing. Since the priority queue was
ordered from highest to lowest priority, the first pending entry has the highest priority.

It is possible for the VO request priority queue to be empty. Accordingly, the process
r e m s a boolean flag to notify the Queue Manager that no VO requests are pending.

89

33.2 I/O System Services IOP Construct UO Requests

I IOSS - - IOP CONsllR - IOR I
CONSTRUCT-TRANS ACTION

RESMRE-TR ANS ACTION I
I RESTORE-CHAIN

I
-1 I

WRITE-DIU-OVERHEAD 1
I

ASSIGN-BR ANCH-POINTER
I

90

3.3.2.1 Process Name: Construct Transaction

Requin?ments
Rd-:

Nota:

10s User Program and Data Pointer
Transaction Pointers

Transaction Output Data
Transaction Branch Instruction

VO Communications Management Software Specifications,
Section 3.2.1.1

None

To execute the I/O requests created by the application, the IOSes have to be initialized.
The program region of the 10s is partitioned into a header section and a linked list of
transaction sections. Each transaction section of the 10s is used by only one chain,
whereas the header section is used by all chains. The construction of the 10s program
region entails the linking of the transaction sections to make the chains. The linking of the
transactions is accomplished by modifying each transaction's branch instruction to point to
the next transaction in the chain or to the end of chain program.

The Construct Transaction process initializes one transaction region in the DPM of a
specific 10s. In addition to modifying the branch instruction of the transaction module, the
Construct Transaction process allocates the I/O data buffers necessary to satisfy the
transaction VO requirements. The process also initializes the output data buffer and the
input and/or output data buffer pointers.

91

3.3.2.2 Process Name: Construct Chain

Requiremt!3
Reference:

Note:

10s User Program and Data Pointer
10s Network Manager Pointer
Chain Pointer

Chain Header Branch Instruction

VO Communications Management Software Specifications,
Section 3.2.1.1

None

Description:

To execute the VO requests created by the application, the IOSes have to be initiaIized.
The program region of the 10s is partitioned into a header section and a linked list of
transaction sections. Each transaction section of the 10s is used by only one chain,
whereas the header section is used by all chains. The construction of the 10s program
region entails the linking of the transaction sections to make the chains. The linking of the
transactions is accomplished by modifying each transaction's branch instruction to point to
the next transaction in the chain or to the end of chain program.

The Construct Chain process links a set of transaction regions into a chain. This procedure
involves calling the Construct Transaction process for each transaction in the chain.

The Construct Chain process also records the address of the first transaction of the chain
which is necessary to execute the VO request.

92

33.2.3 Process Name: Construct Chain Header

. 10s User Program and Data Pointer
Chain Pointer

Chain Header Branch Instruction
Solicited Chain Pointer

VO Communications Management Functional Requirements,
Section 3.1.1.3

Notes: None

In order to execute an VO request, the Solicited Chain Pointer register of the IOSes must be
initialized to pointer to the header of the chains. Since the header section of the 10s
program region is used by all chains, the branch instruction of the header section must be
modified to point to the first transaction of the chain prior to executing the I10 request.
This procedure is completed by the Construct Chain Header process.

3.3.2.4 Process Name: Low Level Select Transaction

Inputx 10s User Program and Data Pointer for Writing to 10s
10s User Program and Data Pointer for Reading from 10s
Transaction Pointer

Transaction Branch Instructions

VO User Interface Software Specifications, Section 2.2.2.3

Nota: None

The Low Level Select Transaction process is called by the Select Transaction procedure and
completes the low level procedures required to select a transaction. The Low Level Select
Transaction process determines the preceding and succeeding transactions to the transaction
to be selected. The preceding transaction's branch instruction is modified to point to the

93

selected transaction while the branch instruction of the selected transaction is modified to
point to the succeeding transaction.

If the selected transaction is the frrst transaction of the chain, then its address is recorded as
the new chain header address (the chain header address is the address written into the
branch instruction of the header section of the 10s program region prior to executing the
chain). Alternatively, if the selected transaction is the last transaction in the chain, then its
branch instruction is modified to point to the end of chain program (the end of chain
program is a sequence of instructions which saves several registers and performs the
transition from solicited to unsolicited mode).

33.2.5 Process Name: Low Level Deselect Transaction

10s User Program and Data Pointer for Writing to 10s
10s User Program and Data Pointer for Reading from 10s
Transaction Pointer

outpllts: Transaction Branch Instructions

ReqUil=l?YM!?ltS
Reference: VO User Interface Software Specifications, Section 2.2.2.3

Note: None

The Low Level Deselect Transaction process is called by the Deselect Transaction
procedure and completes the low level procedures required to deselect a transaction.

The Low Level Deselect Transaction process determines the preceding transaction to the
transaction to be selected and then modifies its branch instruction to point to the transaction
that succeeds the transaction to be deselected. If the deselected transaction is the first
transaction of the chain, then the address of its succeeding transaction is recorded as the
new chain header address (the chain header address is the address written into the branch
instruction of the header section of the 10s program region prior to executing the chain).
Alternatively, if the deselected transaction is the last transaction in the chain, then the
branch instruction of its preceding transaction is modified to point to the end of chain
program (the end of chain program is a sequence of instructions which saves several
registers and performs the transition from solicited to unsolicited mode).

94

3.3.2.6 Process Name: Restore Transaction

Requirements
Referenee:

10s User Program and Data Pointer
Transaction Pointers

Transaction Output Data
Transaction Branch Instruction

None

Nota: None

The Restore Transaction process initializes one transaction region in the DPM of a specific
10s. In addition to modifying the branch instruction of the transaction module, the process
initializes the input andor output data buffer pointers.

3.3.2.7 Process Name: Restore Chain

10s User Program and Data Pointer
10s Network Manager Pointer
Chain Pointer

Requirements
Reference: None

Nota: None

Desaiption:

When a channel is restored from a failed state, the user program region of the IOSes of that
channel has to be restored. The Restore Chain process restores a chain in an 10s by
linking a set of transaction regions into a chain (after the 10s is reinitialized). This
procedure involves calling the Restore Transaction process for each transaction in the
chain.

c -a
95

3.3.2.8 Process Name: Write DIU Overhead

10s User Program and Data Pointer
Transaction Pointer

DIU Address
Encoded DIU Address
Residual Bits

None

Notes: None

Desaiption:

The Write DIU Overhead process initializes the data region in an 10s with the DIU
address, encoded DIU address, and residual bits for a transaction.

. 3.3.2.9 Process Name: Assign Branch Pointer

10s User Program and Data Pointers
Transaction Identifiers

htpds: Transaction Branch Instruction

Requirements
ReferenCe: None

NdeS: None

The Assign Branch Pointer process bypasses the designated transaction by modifying the
branch instruction of the preceding transaction.

96

333 UO System Services Main Initialization

10s - - IOP M A l N - m

3.3.3.1 Process Name: Initialize IOSS

Inputs: None

outputs: Queue Manager Start Command

R ~ U i ~ ~ t S
Reference: None

Notes: None

The Initialize IOSS process controls the initialization of the UO Services. The process calls
the Powerup-IOP procedure to schedule an IOP task to allow the communication of the I/O
request specifications. The process waits for the CP to complete the communication of the
specifications and then schedules the Queue Manager task which initializes the VO Service.

97

33.4 YO System Services Communication of Specifications Task

@ARE-LINK-TESTING-TASK)

33.(4.1 Process Name: Shared Memory Communication Task Type

Companion Transaction Records
Companion Chain Records
Companion UO Request Records

Requimmts
Reference: VO User Interface Software Specifications, Section 2.2.1

Note: None

The Shared Memory Communication task reads the VO request specifications from shared
memory and creates the IOP database of companion records.

The task is scheduled on the IOP through the GPC Real Time Operating System as an on
demand process. The task is synchronized with the Create-Transaction, Create-Chain,
and Create-IOR processes which reside on the CP. The interprocessor synchronization is
achieved using an event and a flag. The event is used to signal that a transaction, chain, or
VO request record has been written into shared memory by the VO System Services on the
CP and can be read by the VO System Services on the IOP. The flag notifies the CP that
the IOP has read the record.

After being signaled by the CP, the IOP Shared Memory Communication task accesses
shared memory and determines the type of record (transaction, chain, VO request) being
communicated. The task then reads the specification record, allocates memory for the
companion record, and initializes the companion record. Finally, the task notifies the UO
System services on the CP that the companion record is created and that another record can
be communicated.

98

3.3.4.2 Process Name: Spare Link Test Task

None - Spare Link Cycle Service Request

I/O Communications Management Software Specifications,
Section 3.2.1.1

Notes: None

Description:

The Spare Link Test task posts Spare Link Cycling service requests to the Queue Manager.
It is scheduled through the GPC Real Time Operating System as a periodic task by the
Spare Link Test Scheduling procedure.

99

3.3.5 I/O System Services Posting Tasks

I IOSS - POSTING-TASKS I
I

(POSTING-TASK-TYPE 3
POSTING-TASK-M ANAGER 1

3.3.5.1 Process Name: Posting Task Type

Inputs VO Request Identifier

Notes:

Service Request for VO Request Execution
Number of Overruns
VO Request Preemption Flag
Spare Link Test Preemption Flag

VO Communications Management Functional Requirements,
Section 3.1.1.1
VO Communications Management Software Specifications,
Section 3.2.1.1

None

Each VO request that is created has a corresponding Posting task on the IOP. A Posting
task is a task that is scheduled through the GPC Real Time Operating System based on the
scheduling requirements of the VO request. The Posting task is activated by the Queue
Manager task during initialization'and is blocked until the scheduling requirements of the
VO request are met. When scheduling requirements have been fulfilled, the Posting task
sets its execution flag in the VO request priority queue and calls the Queue Manager task
(posts a service request). The task is then blocked until the Queue Manager task accepts the
call. After the I/O request has been accepted, the Posting task checks to see if it has
overrun, updates the overrun parameter in shared memory to reflect the number of overruns
that occumd, and loops back to again wait for its scheduling requirements to be met.

100

3.3.5.2 Process Name: Posting Task Manager

VO Request Identifier

NOteS:

VO Communications Management Functional Requirements,
Section 3.1.1.1
UO Communications Management Software Specifications,
Section 3.2.1.1

None

The Posting Task Manager allocates a Posting task for a particular VO request and
schedules it based on the scheduling requirements of the VO request.

101

33.6 YO System Services IOP Powerup

IOSS IOP POWERUP - -

~

AcrrVATE-POSTING_TASKS

CON!TIRUCT-USER-CHAS

RESTORE-USER-CH AINS

I

I

I I I POWERUP-IOP
I

I IOP-COMPLETED I

3.3.6.1 Process Name: Powerup IOP

Inpuls: None

Requiremts
Reference:

Note:

None

None

The Powerup IOP process calls the Specifications Scheduler procedure to schedule the IOP
Shared Memory Communication task that accepts the VO request specifications.

102

33.6.2 Process Name: IOP Completed

None

outplg: IOP Completed Flag

m-
RdC!ItIMX: UO User Interface Functional Requirements, Section 2.1.3

ID User Interface Software Specifications, Section 2.2.3.1

Notes: None

Description:

Flags are used to synchronize the VO System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the I/O request specifications.
Alternatively, the CP must wait for the IOP to initialize the I/O services.

The IOP Completed process sets a flag in shared memory to acknowledge the completion
of UO service initialization process.

3.3.6.3 Process Name: Wait Until CP Completed

Inputs: CP Completed Flag

~ m e n b
Reference: I/O User Interface Functional Requirements, Section 2.1.3

VO User Interface Software Specifications, Section 2.2.3.1

Notes: None

Description:

Flags are used to synchronize the 40 System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the 1/0 request specifications.
Alternatively, the CP must wait for the IOP to initialize the I/O services.

The Wait Until CP Completed process polls the CP Completed flag in shared memory
waiting for the VO System Services on the CP to finish communicating the VO request
specifications.

103

33.6.4 Process Name: Specifications Scheduler

Inpix None

O u W None

Rdgence:

Note: None

VO User Interface Software Specifications, Section 2.2.1.1

Desaiptim:

The Specifications Scheduler process uses the GPC Real Time Operating System to
schedule the IOP Shared Memory Communication task. The Shared Memory
Communication task interacts with the CP to transfer the VO request specifications from the
CP to the IOP.

3.3.6.5 Process Name: Spare Link Test Scheduler

None

None

VO Communications Management Software Specifications,
Section 3.2.1.1

None

The Spare Link Test Scheduler process uses the GPC Real Time Operating System to
schedule a Spare Link Test task. The Spare Link Test task posts spare link cycling service
requests to the Queue Manager task.

104

33.6.6 Process Name: Activate Posting Tasks

h?)Ut= Number of VO Requests

outplg: None

-is
RdCSWlCE I/O Communications Management Software Specifications,

Section 3.2.1.1

Note: None

Description:

The Activate Posting Tasks process calls the Posting Task Manager procedure to schedule a
Posting task for each VO Request.

3.3.6.7 Process Name: Construct User Chains

InplIrs: Number of VO Chains

outplg: None

Requirrments
Rd-: None

Notes: None

The Construct User Chains process calls the Construct Chain procedure to initialize an 10s
program region for each VO Chain created by the application.

105

33.6.8 Process Name: Restore User Chains

Number of UO Chains
Deselected Transactions

w None

None

Nota: None

The Restore User Chains process calls the Restore Chain procedure to restore an 10s
program region (after a channel fails and returns) for each VO Chain created by the
application.

106

33.7 YO System Services Global Memory Utilities

~

IO-GLOB AL-MEM-T

I CP-ALLOCATE 1
I

I IOP-AUOC ATE I

I PUT I
GET

3.3.7.1 Process Name:

ReC,l*IllefltS
Reference:

Notes:

CP Allocate

Number of Bytes

Address of Buffer in Shared Memory

None

None

The CP Allocate process reserves a region in shared memory for an IlO buffer. The
process returns the address of the buffer to the calling process.

107

33.7.2 Process Name: IOP Allocate

In@: Shared Memory Address Record

u Address of Buffer in Shared Memory

Rd-: None

Note: None

Description:

The IOP Allocate process extracts the address of a shared memory VO buffer from a shared
memory address record. The address record is communicated from the CP to the IOP so
that both processors know the location of the buffer.

3.3.7.3 Process Name: Put

Inputs:

ReqUhIK8ltS

Reference:

Number of Bytes
Destination Address (private type)
Source Address

None

None

Note: None

Description:

The Put process moves and votes the designated number of bytes from the source address
to the destination address.

108

3.3.7.4 Process Name: Get

Number of Bytes
Destination Address
Source Address (private type)

outpkr: None

Requirements
ReFerenCe: None

Note: None

Description:

The Get process moves the designated number of bytes from the source address to the
destination address.

3.3.7.5 Process Name: Put with Sumcheck

Note:

Description:

Number of Bytes
Destination Address (private type)
Source Address

Sumcheck

None

None

The Put With Sumcheck process moves and votes the designated number of bytes from the
source address to the destination address while calculating a modulus 256 sumcheck over
the data.

109

33.7.6 Process Name: Get with Sumcheck

Number of Bytes
Destination Address
Source Address (private type)

outplts Sumcheck

l%quimmb
Reference: None

Nota: None

The Get With Sumcheck process moves the designated number of bytes from the source
address to the destination address while calculating a modulus 256 sumcheck over the data.

110

33.8 I/O System Services Shared Memory Allocation

r

10s - - SM ALLOCATE

I NEW-SPEC-SENT
I I

I SEND-NEW-SP EC I

CLEAR-COMPLETION-FLAG

~~

I IOR-COMPLETED 1

111

33.81 Process Name: New Specification Sent

Inputs: None

u Flag for CP/IOP Interprocessor Communication of VO
Requests

ReqUhmmis
R€!fetWW% YO User Interface Software Specifications, Section 2.2.1.1

Nota: None

The New Specification Sent process resets a flag in shared memory to coordinate the
communication of the transaction, chain, and VO request specifications from the CP to the
IOP. The process is used by an VO System Services CP process to synchronize the
interprocessor communication.

3.3.82 Process Name: Send New Specification

Inputs: None

u

Requirements
RderenCe:

Flag for CP/IOP Interprocessor Communication of VO
Requests

VO User Interface Software Specifications, Section 2.2.1.1

Nota: None

Desaiption:

The Send New Specification process sets a flag in shared memory to coordinate the
communication of the transaction, chain, and I/O request specifications from the CP to the
IOP. The process is used by the IOP Shared Memory Communication task to synchronize
the interprocessor communication.

112

3.3.83 Process Name: Ready for New Specification

Reference:

Flag for CP/IOP Interprocessor Communication of VO
Requests

Flag for CP/IOP Interprocessor Communication of UO
Requests

VO User Interface Software Specifications, Section 2.2.1.1

NdeS: None

Desaiption:

The Ready for New Specification process reads a flag in shared memory used to coordinate
the communication of transaction, chain, and VO request specifications. The process is
used by a CP process to determine if the IOP is able to receive more information.

3.3.8.4 Process Name: Clear Completion Flag

Inputs: VO Request Identifier

WJl- VO Request Completion Flag

Requirements
Reference: VO Communications Management Software Specifications,

Section 3.2.1.3

Note: None

Desaiption:

The Clear Completion Flag process resets the shared memory completion flag associated
with the designated VO request identifier. This process is used by a CP application task to
clear a completion flag prior to polling it.

113

33.8.5 Process Name: Set Completion Flag

In- I/O Request Identifier

OUQ- I/O Request Completion Flag

Requirements
Refgence: I/O Communications Management Software Specifications,

Section 3.2.1.3

Notes: None

The Set Completion Flag process sets the shared memory completion flag associated with
the designated UO request identifier. This process is used by an IOP I/O Request
Completion process to notify the CP application that the VO request has been processed.

3.3.8.6 Process Name: VO Request Completed

Inputs: VO Request Identifier

Qm- I/O Request Completion Flag

Requirements
Reference: VO User Interface Software Specifications, Section 2.2.3.1

Nota: None

The I/O Request Completed process reads the shared memory completion flag associated
with the designated UO request identifier. This process is used by a CP application task to
determine if the I/O request has been completely processed.

114

33.8.7 Process Name: Unlock UO Request

UO Request Identifier

olltprcr: UO Request Semaphore for Output Buffers

VO User Interface Software Specifications, Section 2.2.2.1,
2.2.2.2

Notes: None

Desaiption:

The Unlock VO Request process unlocks the shared memory output data buffer select
region of the designated 40 request by resetting the locking semaphore.

3.3.8.8 Process Name: Unlock YO Request Read

Inputs: VO Request Identifier

oum YO Request Semaphore for Input Buffers

Requirpmentr:
Ref-: UO User Interface Software Specifications, Section 2.2.2.1,

2.2.2.2

Notes: None

The Unlock VO Request Read process unlocks the shared memory input data buffer select
region of the designated 40 request by resetting the locking semaphore.

115

33.8.9 Process Name: Update VO Request Overrun Count

I/O Request Identifier
Number of Overruns

outw= Number of Overruns Variable in Shmd Memory

None

NOteS: None

The Update VO Request Overrun Count process sets an integer variable in shared memory
to equal the designated number of overruns. The process is used to notify the application
of the Occurrence of an overrun (or frequency of occurrences).

3.3.8.10 Process Name: Unlock Select Lock

Inpub: None

outw= Semaphore for Select Buffers

Requiremts
Reference: VO User Interface Software Specifications, Section 2.2.2.3

NdeS: None

The Unlock Select Lock process unlocks the shared memory select buffers by resetting the
locking semaphore. The process is called by the CP Select process after writing the
transactions to be selected into shared memory and IOP I/O Request Execution process
after selecting the specified transactions.

116

33.8.11 Process Name: Unlock Deselect Lock

Jn- None

ouw= Semaphore for Deselect Buffers

I/O User Interface Software Specifications, Section 2.2.2.3

Note: None

The Unlock Deselect Lock process unlocks the shared memory deselect buffers by resetting
the locking semaphore. The process is called by the CP Deselect process after writing the
transactions to be deselected into shared memory and IOP I/O Request Execution process
after deselecting the specified transactions.

3.3.8.12 Process Name: Allocate Memory

Note:

Shared Memory Flags
Shared Memory Events
Shared Memory Communication Buffers

VO User Interface Software Specifications, Section 2.2.2.4

None

The Allocate Memory process allocates and initializes flags, events, and buffers in shared
memory for the VO System Services. These flags, events, and buffers are used for
interprocessor data communication and synchronization.

117

3.3.9 YO System Services Dual Port Memory Map

IOSS - DPM-MAP

USER-RECORD

USERACCESS
I

I

3.3.9.1 Process Name: Initialize I/O User Services DPM

User Program and Data Pointer
Network Manager Program and Data Pointer

ReqUiR?lIlelltS
Refgence: None

Note: None

To execute the I/O requests created by the application, the IOSes have to be initialized.
The program region of the 10s is partitioned into a header section and a linked list of
transaction sections. Each transaction section of the 10s is used by only one chain,
whereas the header section is used by all chains.

The Initialize I/O User Services DPM process initializes the program region of the IOSes of
a GPC with the chain header and linked list of transaction modules. The process must
initialize the DPMs prior to the construction of the VO user chains (see Process 3.3.2.2 -
Construct Chain).

118

3.3.9.2 Process Name: Initialize Global Variables

None

Requirements
Refgence:

Notes:

Global Transaction Count
Global Chain Count
Global VO Request Count
Memory Index Array

None

None

The Initialize Global Variables process initializes the Transaction, Chain, and VO request
identifier global variables (global to the VO System Services on a processor). It also
initializes the Memory Index Array which is used to initialize the IOS(es) of a GPC.

119

33.10 I/O System Services Private ID Types

IO!% - PRIVATE

ID

RETURN-ID-VALUE

SET-ID-VALUE

I

I
I

I
I

I

3.3.10.1 Process Name:

Inputs:

outplts:

Return Identifier Value

Identifier of the private type ID

Identifier of the type Integer

Requiremb
Reference: None

Notes: None

Description:

A private type is used for the transaction and chain identifiers to protect the VO User
Interface from errors introduced by the application.

The Return Identifier Value process converts an identifier from the private type to an integer
type.

120

3.3.10.2 Process Name: Set Identifier Value

Identifier of the type Integer

u Identifier of the private type ID

None

NOteS: None

Description:

A private type is used for the transaction and chain identifiers to protect the YO User
Interface from errors introduced by the application.

The Set Identifier Value process converts an identifier from an integer type to the private
tY Pes

121

3.4 UO Communications Management Data Dictionary

Absolute Chain ID : The number of chains that have been created by the applications user
(range 1 - Maximum Chain ID).

Absolute YO Request ID : The number of VO requests that have been created by the
applications user (range 1 - Maximum VO Request ID).

Absolute Transaction ID : The number of transactions that have been created by the
applications user (range 1 - Maximum Transaction ID).

Active Root Link : A record containing the channel number and the channel identifier of the
FIT channel which is currently being used to access a given network via an 10s connected
to that channel.

Active Root Link Flag: A boolean valued flag indicating whether or not a working
connection from a GPC to a root node exists.

Available YO Services : An array of booleans indexed by I/O service identifiers, one for
each GPC in the system. When the boolean is true, the given service is available to the
GPC.

Channel Identifier : An identifier which designates a particular physical channel of an IOP.

Channel Number : A logical identifier for a channel of an IOP which contains the 10s
connected to a given network.

Chain Record : A record that retains all of the information associated with a chain created
by an applications user. The fields of a chain record are as follows:

a) Visible chain ID.
b) Private chain ID.
c) NetworkID.
d) Array of transaction IDS (transactions in the chain).
e) Number of transactions. '

f) Boolean flag which, when set, indicates that the chain has been assigned to an VO
request.

g) Type of data in the chain (static, dynamic or mixed).
h) Address in the 10s DPM of the first transaction in the chain.
i) Pointer to the next chain in the VO request.
j) Pointer to the associated VO request record.

Channel Selection : An array indicating which FTP channels interface to a particular
network.

122

Connected Networks : An array of booleans indexed by GPC identifier. When the boolean
is true, the given network is physically connected to the GPC.

Connection Indicator : A boolean valued object which when true indicates that a given
network is physically connected to a given GPC.

Current Root Link : A record containing the channel number and the channel identifier of
the FTP channel which is currently being used to access a given network via an 10s
connected to that channel.

DIU Chain Header Record : A record that specifies the initial sequence of instructions that
are executed by an 10s when each chain is executed. The sequence of instructions are as
follows:

Read the local time.
Read the HDLC Interrupt Register.
Read the HDLC Status Register.
Set the number of residual bits.
Set the polling priority.
Enable the receiver.
Start the poll.
Read the local time.
Branch to first transaction in the chain.

DIU Chain Program Record : A record that consists of a DIU chain header record and
array of DIU transaction records. The record is used as a temp€ate to initialize the user
program region of the DPM of the 10s. The organization of the DPM after the initialization
process is illustrated in the following figure.

TRANSACnONS "Z 2

E M) O F C "
PROGRAM

123

DIU Transaction Record : A record that specifies the sequence of instructions that are
executed by an 10s when each transaction is executed. The sequence of instructions are as
follows:

a) Disable the HDLC transmitter and receiver.
b) Stop the local timer.
c) Enable the 10s auto flag.
d) Enable the HDLC transmitter.
e) Send the output command (data) to the DIU.
f) Disable the 10s auto flag.
g) Enable the HDLC receiver and disable HDLC transmitter.
h) Read the Interrupt Register.
i) Write the desired time out to the timer and start timer.
j) Receive solicited input.
k) Branch to next transaction in the chain or end of chain program.

DPM Pointer : A pointer whose value is the address of the fxst addressable byte of one
DPM or set of DPMs. When used to read from a DPM, the pointer value selects exactly
one DPM. When used to write to a DPM, the pointer value may select a set of physical
DPMs, at most one per channel, each occupying the same memory space within the
channel. The pointer imposes an organization on the memory space which supports the
execution of chains on an VO network and the reading and writing of data used by those
chains.

VO Network Identifier : A logical identifier which is uniquely assigned to every physical
network in the system.

YO Network Manager Did Not Accept Repair : An array (indexed by network ID) of
boolean flags which, when set, indicate that the VO Network Manager was unable to accept
a network repair request.

I/O Request Execution Count : The number of times of VO request has been executed.

YO Request Preempted Flag : A boolean flag which, when set, indicates that an VO request
was preempted by a priority 7 VO request.

YO Request Record : A record that retains all of the information associated with an VO
request created by an applications user. The fields of an VO request record are as follows:

a) Visible VO request ID.
b) Private VO request ID.
c) Network ID.
d) Array of chain IDS (chains in the VO request).
e) Number of chains.
f) Total number of transactions in the VO request.

124

g) VO request time out.
h) Frequency at which an event is used to notify the completion of the UO request.
i) priority of the VO request.
j) Scheduling parameters - initiation, completion, and repetition.
k) Pointer into the VO request priority queue.

YO Service Descriptor : A record which states whether a given VO service is local or
regional. In the case of a local VO network, it contains an array of network identifiers
which specify the networks assigned to this service.

YO Service Identifier : A logical identifier which is uniquely assigned to every VO service
in the system.

10s Identifier : An logical identifier which designates a particular 10s which in turn maps
to a specific address range within an FIT channel.

Local Chain Pointers : An array of pointers to chain records created by the applications
user. The array is indexed by chain ID and allows direct access to the chain records. Local
Chain Pointer arrays are constructed on the CP and IOP.

Local YO Request Pointers : An array of pointers to UO request records created by the
applications user. The array is indexed by UO request ID and allows direct access to the
VO request records. Local VO Request Pointer arrays are constructed on the CP and IOP.

Local Transaction Pointers : An array of pointers to transaction records created by the
applications user. The array is indexed by transaction ID and allows direct access to the
transaction records. Local Transaction Pointer arrays are constructed on the CP and IOP.

Maximum Storage : An integer constant indicating the maximum number of bytes available
for the YO chain programs and data for the dual ported memory of an VO Sequencer.

Memory Index Array : An array of pointers indexed by network ID that indicate the next
available byte in the DPM of a particular 10s. The array is used to reserve memory in the
DPM of the IOS(es) for the transaction UO buffers.

Posting Task Pointers: An array of pointers indexed by VO request ID to the tasks that post
VO service requests to the Queue Manager task (YO Posting tasks). The array is used
during the allocation and scheduling of the Posting tasks.

Preempt YO Request Flag : A boolean flag which, when set, indicates that a priority 7 I/O
request is pending.

125

Preempt Spare Link Test Flag : A boolean flag which, when set, indicates that an VO
request is pending.

Preempted VO Request ID : The ID of the VO request that was preempted by a priority 7
UO request.

Preempted VO Request State : The state (either "before writing output data to the DPM",
"before VO request execution" or "before uploading input data from the DPM') of the VO
request prior to being preempted by a priority 7 VO request.

Relative DPM address : A record which is used to map the thirty-two bit address used by
the FTP to access a location in an IOS/DPM into a sixteen bit value which the 10s will use
to access the same location. Since the address space of the 10s is 8K bytes, only the lower
thirteen bits are used in the mapping, the three highest order bits are assigned a value of
zero. The mapping is defined below, where f is the value of the i* bit in the sixteen bit
address:

0, if 15 c= i <= 13
value of the ith bit in the thirty-two bit address if 0 <= i <= 11
value of the 15th bit in the thirty-two bit address if i= 12

f(i)=

Restoration Record: A record containing information about the repaired network
component which the operator wishes to be returned to service. If a node is to be restored,
the node number is provided. If a link is to be restored, a node number and a port number
adjacent to that link is provided.

Results of Channel OK Test : A boolean value which is true if the test indicates that an
FTP channel is not desynchronized and false if it is desynchronized.

Spare Link Test Preempted Flag : A boolean flag which, when set, indicates that a spare
link cycling request was preempted by an VO request.

System Address : A thirty-two bit value which maps to some physical location in the
system. By which the M680XO microprocessor accesses those physical locations

Unreachable DIUs : A list of DIUs which are attached to failed nodes and which therefore
cannot send or receive messages on the VO network.

Transaction Record : A record that retains all of the information associated with a
transaction created by an applications user. The fields of a transaction record are as
follows:

a) Visible transaction ID.
b) Private transaction ID.
c) DIU address.

126

1 .

l -

d) Transaction type (input or output).
e) Number of input data bytes.
f) Number of output data bytes.
g) Maximum number of errors before system bypass.
h) Number of errors that have o c c d during the execution of the transaction.
i) A boolean flag which, when set, indicates that the transaction is selected.
j) Timeout.
k) Local address (CP or IOP) of the input data buffer.
1) Local address (CP or IOP) of the output data buffer.
m) Location of input data buffer in shared memory.
n) Location of output data buffer in shared memory.
0) Pointer to next transaction in chain.
p) Pointer to associated chain record.
q) Location of input data buffer in DPM of the 10s
r) Location of output data buffer in DPM of 10s.
s) Boolean flag indicating if the transaction has been assigned to a chain.

User Pointer : A pointer whose value is the address of the first addressable byte of the
upper 4K of one DPM or set of DPMs. When used to read from a DPM, the pointer value
selects exactly one DPM. When used to write to a DPM, the pointer value may select a set
of physical DPMs, at most one per channel, each occupying the same memory space within
the channel. The pointer imposes an organization on the memory space which supports the
execution of application chains on an VO network and the reading and writing of data used
by those chains.

127

4.0 YO SYSTEM SERVICES USER EXAMPLE

The UO User Interface provides a user friendly environment allowing the applications
programmer to create and schedule UO requests, develop application tasks and processes,
and access DWs. This section provides examples of the construction of an UO network,
creation of an VO request and development of an application task to illustrate the use of the
UO System Services.

4.1 Overview

The UO System Services are written in Ada@, a design language primarily developed for
the US Department of Defense for use in embedded systems. Ada is structured around a
package framework allowing the development of structured modules. Accordingly, the VO
networks, 1/0 requests and application tasks are constructed in a package oriented
environment.

The construction of 1/0 networks, 1/0 requests, and application tasks require the
m&ication/creation of five Ada packages: UO System Services Network Data Types, 1/0
System Services, Central Database, UO requests, applications tasks, and I/O System
Services CP Main Initialization (illustrated in the Booch diagrams of Figures 12- 16). The
UO System Services Central Database and Network Data Types packages are the packages
in which the networks are defined, and they must be modified to construct the network
topologies required by the application. The YO Requests package is a module in which the
transactions, chains, and UO requests are created. Furthermore, the Application Tasks
package is the module in which the user develops the application tasks that interact with the
VO requests. Finally, the CP Main Initialization package is the means by which the user
transfers control from the YO User Interface to the application tasks.

I IOSS NETWORK DATA-TYPES I - -
f DIU-ID-TYPE I

Figure 12: VO System Services Network Data Types Padtage

129

I IOSS - CENTRAI-DATABASE I
I I
I

INIT-GLOB AL-TOPOLOGY-1

I"I'-GLoBAL-TOPOuX;Y-2
I

I"I'-GLOBAL-TOPOLOGY-m
I

Figure W : YO System Services Central Database Package

TRANSACTION-D ATA-ARRAY

IOR-ID-ARRAY
I

CREATEIO-REQUESTS
I

I

Figure 14: YO Request Package

APPLICATION-TASKS

APPLICATION-TASK-1
I
APPLICA?'ION-TASK-2
I

I

APPLICATION-TASK-m 1
\ d

Figure 15: Application Tasks Package

130

I

I~TART_APPLICATION-TASKS I I

Section 4.2 presents a template to illustrate the construction of an VO network, while
Section 4.3 uses an example to illustrate the creation of a single chain, on demand I/O
request and a two chain, periodic VO request. Section 4.4 provides an example of a on
demand application task which is synchronized with the I/O requests created in Section 4.3.
Finally, Section 4.5 provides an example of the use of the CP Main Initialization package to
transfer control from the VO User Interface to the application tasks.

4.2 Construction of an I/O Network Topology

The discussion of the VO User Services and VO Communications Management function of
the VO System Services has continually referred to VO networks. The I/O networks are
defined in the INIT-GLOBAL-TOPOLOGY procedures of the package
IOSS-CENTRAL-DATABASE. These procedures must be modified to create the I/O
network topologies required by the application. In addition, the type DIU-ID-TYPE in the
IOSS-NETYPES package must be modified to provide logical names for the DIUs that are
connected to the network. In this section, the method to construct a specific network
topology for the AIPS system is illustrated.

procedure body INIT-GLOBAL-TOPOLOGY-2 is
begin

N-P-N(2) := 10;
-- Network 2 consists of 10 nodes.

GLOBAL-TOPOLOGY(2) := new.NODE-ARRAYTYPE(1 .. N-P-N(2));
-- Define the range of nodes numbers in network 2 and allocate the required memory.

-- Node 1
GLOBAL-TOPOLOGY(2)(l).NODE-ADDRESS := 1;
-- The physical node address for logical node 1 of network 2 is 1;

13 1

-- P a t 0 of Node 1 is a Root Node, connected to an 10s (logical ID of 3) in
-- channel A of a GPC, and the network is connected to GPC 2 (GPC-ADDR).
GLOBAL-TOPOLOGY (2)(l).PoRT-ARRAY (0) :=

(ADJACENT-ELEMENT => GPC,
GPC-ADDR => 2,
CHANNEL => A,
10s => 3);

-- Port 1 of Node 1 is connected to Port 1 of logical Node 3 (Node-Number is
-- logical ID) The physical address (Node-Address) of Node 3 is also 3.
GLOBAL-TOPOLOGY (2)(1).PORT-ARRAY (1) :=

(ADJACENT-ELEMENT => NODE,
NODE-NUMBER => 3,
NODE-ADDRESS => 3,
PORT-NUMBER => 1);

-- Port 2 of Node 1 is connected to Port 2 of Node 2.
GLOBAL-TOPOLOGY (2)(l).PORT-ARRAY (2) : =

(ADJACENT-ELEMENT => NODE,
NODE-NUMBER => 2,
NODE-ADDRESS => 2,
PORT-NUMBER => 2);

-- Port 3 of Node 1 is connected to a DIU with a logical name of S 1 and physical
-- address of 11. The logical name S 1 must be included in the type DIU-ID-TYPE
-- in the IOSS-NETYPES package.
GLOB AL-TOPOLOGY (2)(l).PORT-ARRAY (3) : =

(ADJACENT-ELEMENT => DIU,
DIU-ADDR => 11,
DILJJD => Sl);

-- Port 4 of Node 1 is connected to Port 4 of Node 6.
GLOBAL,-TOPOLOGY(2)(l).PORT_ARRAY(4) :=

(ADJACENT-ELEMENT => NODE,
NODE-NUMBER => 6,
NODE-ADDRESS => 6,
PORT-NUMBER => 4);

-- Node 2
GLOBAL-TOPOLOGY(2)(2).NODE-ADDRESS := 2;
-- The physical node address for logical node 2 of network 2 is 2;

132

-- Port 0 of Node 2 is connected to Port 0 of Node 8.
GLOBAL-TOPOLOGY (2)(2)90RT_ARRAY (0) :=

(ADJACENT-ELEMENT => NODE,
NODE_NUMBER => 8,
NODE-ADDRESS => 8,
PORT-NUMBER => 0);

-- Port 1 of Node 2 is not connected.
GLOBAL-TOPOLOGY (2)(2)90RT-ARRAY (1) :=

(ADJACENT-ELEMENT => NONE);

-- Port 2 of Node 2 is connected to Port 2 of Node 1. Notice the corresponding
-- connections with Port 2 of Node 1 in the database.
GLOBAL-T0POLOGY(2)(2)90RT-ARRAY (2) : =

(ADJACENT-ELEMENT => NODE,
NODE_NUMBER => 1,
NODE-ADDRESS => 1,
PORT-NUMBER => 2);

-- Port 3 of Node 2 is not connected.
GLOBAL-TOPOLOGY(2)(2)SORT_ARRAY(3) :=

(ADJACENT-ELEMENT => NONE);

-- Port 4 of Node 2 is connected to Port 4 of Node 4.
GLOB AL-TOPOLOGY (2)(2).PORT_ARRAY (4) :=

(ADJACENT-ELEMENT => NODE,
NODE-NUMBER => 4,
NODE-ADDRESS => 4,
PORT-NUMBER => 4);

133

-- Node 10
GLOBAL-TOFQLOGY(2)(lO).NODE-ADDRESS := 10;
-- The physical node address for logical node 10 of network 2 is 10;

-- Port 0 of Node 10 is connected to Port 0 of Node 4.
GLOBAL-TOPOLOGY (2)(lO).PORT-ARRAY (0) :=

(ADJACENT-ELEMENT => NODE,
NODE-NUMBER => 4,
NODE-ADDRESS => 4,
PORT-NUMBER => 0);

-- Port 1 of Node 10 is not connected.
GLOBAL-TOPOLOGY (2)(1 O).PORT-ARRAY (1) :=

-- Port 2 of Node 10 is connected to Port 2 of Node 9.
GLOBAL_TOPOLOGY(2)(lO).PORT-ARRAY (2) :=

(ADJACENT-ELEMENT => NONE);

(ADJACENT_ELEMENT => NODE,
NODE-NUMBER => 9,
NODE-ADDRESS => 9,
PORT-NUMBER => 2);

-- Port 3 of Node 10 is connected to Port 3 of Node 8.
GLOBAL-TOPOLOGY (2)(lO).PORT-ARRAY (3) : =

(ADJACENT-ELEMENT => NODE,
NODE-NUMBER => 8,
NODE-ADDRESS => 8,
PORT-NUMBER => 3);

-- Port 4 of Node 10 is not connected.
GLOBAL-TOPOLOGY (2)(10) .PORT-ARRAY (4) : =

(ADJACENT-ELEMENT => NONE);

end INIT-GLOBAL-TOPOLOGY-2;

4.3 Creation of an YO Request

The creation of VO requests was discussed in detail in Section 2.2 - VO User Interface
Software Specifications. In this section, the creation of a periodic and on demand 1/0
request is provided to illustrate the use of the VO User Interface.

134

with IOSS-IOR-SPEC; use IOSS-IOR-SPEC;
-- include the VO Request Specification package to make the VO User Interface calls
-- visible to the IO-REQUESTS package;

package IO-REQWSTS is
-- An Ada package consists of a package specification and a package body. The package
-- specification contains the types, objects, and subprograms declarations that are visible to
-- other packages. The body contains transparent types, objects, and subprograms and
-- provides the instructions that implement the visible subprograms.

type BYTE is range 0 .. 255; -- define a memory byte type.
for BY"SI2E use 8;
TRANSACTION-INPUT-DATA-1 : array (0 .. 6) of BYTE,
TRANSACTIONJNPUT-DATA-2 : array (0 .. 6) of BYTE;
TRANSACTION-OUTPUT-DATA-1 : array (0 .. 1) of BYTE;
TRANSACrION-OUTPUT-DATA-2 : array (0 .. 1) of BYTE;
TRANSACTION-OUTPUT-DATA-3 : array (0 .. 1) of BYTE;
TRANSACrION-OUTPUT-DATA-4 : array (0 .. 1) of BYTE;

-- set the size of the type BYTE to be 8 bits.

-- Each output transaction (3,4) has 2 bytes of output data. Each input
-- transaction (1,2) has 2 bytes of output data and 7 bytes of input data.

TRANSACTION-ARRAY-1 : ID-ARRAY(1);
TRANSACTION-ID-ARRAY-2 : ID-ARRAY(1);
TRANSACTION-ID-ARRAY-3-4 : ID-ARRAY(2);

-- Definition of the transaction arrays that will be passed into the Create-Chain
-- procedure. The number in parentheses depicts the number of transactions that
-- will be in the chain.

C"-ID-ARRAY-12 : ID-ARRAY(2);
CHAIN-ID-ARRAY-3 : ID_ARRAY(1);

-- Chains 1 and 2 will be executed simultaneously on two redundant networks
-- (the chains of multiple chain VO requests must be executed on different
-- networks). Chain 3 is only executed on one network. The number
-- in parentheses depicts the number of chains that will be in the I/O request.

IOR-1, IOR-2 : IOR-ID-TYPE
--The definition of the VO request IDS.

procedure CREATE-IO_REQUESTS;
-- The procedure that creates the I/O q u e s t s . It will be called from the CP Main
-- Initialization package.

end IO-REQUESTS;

135

package body IO-REQUESTS is

SCHED-INFO : IOR-SCHED-RECORD;
PERIODIC-SCHED_INFO : PERIODIC-SCHED-RECORD;
TRANS-INFO : TRANSACTION-INFO-FECORD;
-- Definition of types that are used to create the transactions and VO requests.

procedure CREATE-IOR-1 is

TRANSACTION-OUTPUT-DATA-l:= (16#F3#, 16#BO#);
TRANSACTION-OUTPUT-DATA-2 := (16#F3#, 16#BO#);
-- Initialize the output data buffers for transactions 1 and 2.

TRANS-INFO:= (IO => INPUT;
DIU-ID => 12;
NUM-DATA-BYTES-IN => 7;
NUM-DATA-BYTES-OUT => 2;
DYNAMIC-OR-STATIC => STATIC;
MAX-BEFOW-BYPASS => 0;
TIME-OUT => 255;
DATA-BUFFER-INPUT =>

DATA-BUFFER-OUTPUT =>
TRANSACTION-INPUT-DATA-1 'ADDRESS;

TRANS ACTION-OUTPUT-DATA- 1 'ADDRESS);
-- Definition of VO parameters for transaction #1

CWATE-TRANSACI'ION(TRANSACI'IONJD_ARRAY-l.IDS(l),

-- Create transaction #l;
TRANS-INFO);

136

TRANSINFO:= (IO => INPUT;
DIU-ID => 13;
NUM-DATA-BYTES-IN => 7;
"M-DATA-BYTES-OUT => 2;
DYNAMIC-OR-STATIC => STATIC;
MAX-BEFORE-BYPASS => 50;
TIME-OUT => 128;
DATA-BUFFER-INPUT =>

DATABUFFER-OUTPUT =>
TRANSACTION-INPUT-DATA-2'ADDRESS;

TRANSACTION-OUTPUT-DATA-2'ADDRESS);
-- Definition of UO parameters for transaction #2

CREATE-TRANSACIION(TRANSACIION-Il-ARRAY-2.IDS(l),

-- Create transaction #2;
TRANSINFO);

CREATE-CHAIN(CHAIN-ID-ARRAY- 1 2 . IDS (1),
NETWORK-ID => 1,
TRANSACI'ION-ID-ARRAY-1);

-- Create Chain #1 which will execute transaction #1 on network #l.

CREATE-C"(CHAIN-ID-ARRAY-1-2.IDS(2),
NETWORK-ID => 3,
TRANS ACI'ION-ID-ARRAY-2);

-- Create Chain #2 which will execute transaction #2 on network #3.

PERIODIC-SCHED-INFO := (HOW-STARTED =>START-AFIER-DEL,AY;

-- Start the periodic application task after a 30 second delay.
WAIT-FQR => DURATION(30));

SCHEDJNFO := (PRIORITY => 6;
COMPLETION-EVENT => ALWAYS;
IOR-TIME-OUT => 1OOo;
HOW-SCHEDULED => PERIODIC;
START => PERIODIC-SCHED-INFO;
REPETITION-PERIOD => DURATION(.Ol);
WHEN-TO-STOP => NEVER-STOP);

-- Schedule the VO request to be periodic at 100 hz , have a priority of 6, always
-- use an event to signal its completion, start after a 30 second delay, require 1 ms.
-- on the networks and never stop.

137

CREATE-IOR(I0R-1, CHAIN-ID-ARRAY-1-2, SCHEDJNFO);
-- Create ID request #1

end CREATE-IOR-1;

procedw CREATE-IOR-2 is

TRANSACTION-OUTPUT-DATA-3 := (16#F3#, 16#B 1#);
TRANSACTION-OUTPUT-DATA-4 := (16#F3#, 16#B2#);
-- Initialize the output data buffers for transactions 3 and 4.

TRANS-INFO:= (IO => OUTPUT,
DIU-ID => 14;
NUM-DATA-BYTES-OUT => 2;
DYNAMIC-OR-STATIC => DYNAMIC;
DATA-BUFFER-OUTPUT =>

TRANSACTION-OuTPUT-DATA-3'ADDRESS);
-- Definition of output parameters for transaction #3

CREATE-TRANSACI'ION(TRANSACTION-ID-ARRAY-3-4.IDS(l),

-- Create transaction #3;
TRANS-INFO);

TRANS-INFO:= (IO => OUTPUT;
DIU-ID => 13;
NUM-DATA-BYTES-OUT => 2;
DYNAMIC-OR-STATIC => DYNAMIC;
DATABUFFER-OUTPUT =>

TRANSACTION-OUTPUT-DATA-4'ADDESS);
-- Definition of output parameters for transaction #4

CREATE_TRANSACTION(TRANSACTION-ID-ARRAY-3-4.IDS(2),

-- Create transaction #4,
TRANS-INFO);

CREATE-C"(CHAIN-IDARRAY-3. IDS (1) ,
NETWORK-ID => 2,
TRANSACTION-ID-ARRAY-3-4);

-- Create Chain #3 which will execute transactions #3 and #4 on network #2.

138

SCHED-INFO := (PRIORITY => 7;
COMPLETION-EVENT => NEVER
IOR-TIMJ-OUT => 2000;
HOW-SCHEDULED => ON-DEMAND);

-- Schedule the VO request to be on demand, have a priority of 7, require 2 ms. on
-- the network and never use an event to signal its completion.

CREATE-IOR(I0R-2, CHAIN-ID-ARRAY-3, SCHED-INFO);
-- Create VO request #2

end CREATE-IOR-2;

procedm CREATE-IO-REQUESTS is

begin
CREATE-IOR-1;
CREATE-IOR-2;

end CREATE-IO-REQUESTS;

end IO-REQUESTS;

4.4 Creation of an Application Task

The application tasks that are created by the user may be synchronized with specific 1/0
requests or "free running" processes. In the simple synchronized case, either the 1/0
request is periodically triggered by the application (on demand VO request; periodic
application) or the application task is periodically triggered by the VO request (on demand
application; periodic I/O request). In the simple free running case, the I/O requests and
application tasks are both periodic. Alternatively, combinations of the synchronization/free
running schemes can be incorporated to handle more complex control applications.

This section presents an example to illustrate some of the features of the VO User Interface.
The example constructs an application task which is synchronized with the I/O requests
created in Section 4.3. The control flow of the application task is as follows:

1) VO request #1 periodically reads sensor information.
2) The application task is started by the completion event of 1/0 request #l.
3) After the application task is started, the input data is read. The application task

4) After the output commands have been calculated, the application task writes the

5) After VO request #2 is started, the application task loops back to repeat the

'

uses the input data to generate output commands.

output data and uses an event to start VO request #2.

process (2 - 4).

139

with SCHEDULER, EVENT-CONTROL, IO-REQUESTS, IOSS-IORSPEC,

use SCHEDULER, EVENT-CONTROL, IO-REQUESTS, IOSS-IOR-SPEC,
TASKS-IDS, APPLICATION-LOG;

TASKS-IDS, APPLICATION-LOG;

package APPLICATION-TASKS is

task type APPLICATION-TASK-TYPE is

end APPLICATION-TASK-TYPE;
entry START-APPLICATION-TASK;

APPLICATION-TASK : APPLICATION-TASK-TYPE
-- Define an object of APPLICATION-TASK-TYPE.

end APPLICATION-TA S KS ;

package body APPLICATION-TASKS is

function GET-APPLICATION-TASK-ID is new TASK-IDSID-OF

APPLICATION-TASK-ID : TASK-IDS.TASK-ID :=

-- Determine an ID for the application task to schedule it.

(APPLICATION-TASK-TYPE);

GET_APPLICATION-TASK_ID(APPLICATION-TASK);

task body APPLICATION-TASK-TYPE is

COMPLETION-E~NT : a-EVENT,
LOCKED, ERROR, OLD-DATA : BOOLEAN := FALSE;
OVERRUN-CNT : INTEGER := 0;

APPLICATION-LOG-ID : LOG-RANGE := 1;
-- Define some objects that will be used for error checking.

-- Select the application Log to be used.

begin

accept START-APPLICATION-TASK;
-- Wait until control has been passed to the application task from the CP Main
-- Initialization procedure.

WAIT-UNTL-IOP_COMPLETED;
--Wait until the VO Services have been initialized.

140

I -

COMPLETION-EVENT := IOR~COMPLETION~EVENT(IOR~1);
-- Obtain the pointer to the completion event associated with VO request #1.

SCHEDULE(APPLICATION-TASK-ID,
FALSE,
SAME-PRIORITY,
(ON-EVENT-SET, COMPLETION-EVENT), .
NO-REPETITION,
NO-COMPLETION);

--Schedule the application task to be triggered by the completion event from I/O
-- request #l.

WAlT-FOR-SCHEDULE
-- Wait for the scheduling requirements to be met. Specifically, wait for VO
-- request #1 to be completed.

READ_IOR(IOR-1, LOCKED, ERROR, OLD-DATA);
-- Read the input data returned by I/O request #l. The input data is located
-- in the buffers defined in IO-REQUESTS for transactions 1 and 2.

if not ERROR and then not LOCKED then

--
-- Follow appropriate control laws to determine output data.
-- Store the output data in the output buffers allocated for
-- transactions 3 and 4 in the package IO-REQUESTS.
--

WRlTE-IOR(I0R-2, LOCKED);
-- Write the output data.

START-IOR(IOR-2);
-- Start VO request #2.

else

Lffi-ERROR(APPLICATION-Lffi-ID,
INTEGER(I0R-1);
"APPLICATION TASK",
"LOCKED OR ERROR DURING READ");

-- Log error in application log.

141

end if;

end loop;

end APPLICATION-TASK-TYPE

end APPLICATION-TASKS;

4 5 Passing Control to an Application Task

The Local System Services performs the function of GPC Initialization, as discussed in
[13. After the GPC Initialization process is complete, the VO requests can be created and
the application tasks started. The START-APPLICATION-TASKS procedure allows the
user to invoke the CREATE-IO-REQUESTS procedure and subsequently start the
predefined application tasks. Unlike the IO-REQUESTS and APPLICATION-TASKS
packages which can be arbitrarily named by the user, the IOSS-CP-MAIN-INIT package
and START-APPLICATION-TASKS procedure names can not be changed. The main
program on the CP expects these names to exist.

The following example illustrates the invocation of the user defined Create VO Requests
procedure and starting the associated application tasks.

with IO-REQUESTS, IOSS-IOR-SPEC, APPLICATION-TASKS ;
use IO-REQUESTS, IOSS-IOR-SPEC, APPLICATION-TASKS;
package IOSS-CP-MAIN-INIT is

procedure START-APPLICATION-TASKS;
-- Make the Start Application Task procedure visible to the CP Main Program

end IOSS-CP-MAIN-INIT,

package body IOSS-CP-MAIN-INIT is

procedure body START-APPLICATION-TASKS is
begin

CREATE-IO-REQUESTS ;
-- Invoke Create VO Requests Procedure.

CP-COMPLETED;
-- Signal the IOP that the VO requests have been created.

142

APPLICATION-TASK.START-APPLICATION-TASK;
-- Start the application tasks.

end START-APPLICATION-TASKS;

end IOSS-CP-MAIN-INIT,

143

5.0 CONCLUSIONS AND RECOMMENDATIONS

The Advanced Information Processing System (AIPS) VO System Services have been
designed, implemented, and tested on the centralized configuration of the AIPS engineering
model. The VO User Interface provides a robust, user friendly environment that allows an
applications programmer to create VO requests and applications tasks to directly reference
DIUs (to the user, the DIUs appear to be memory mapped). The VO Communications
Management system interacts with the VO User Interface to schedule, execute, and process
the VO requests. The VO Network Management function initializes its associated network
and performs network FDIR when required. The responsibilities of this software include
the following: communicating VO request specifications from the CP to the IOP,
scheduling application tasks and VO requests, communicating VO data between the CP and
IOP, executing VO requests on single and redundant networks, performing VO request
error processing, communicating error and status information to application tasks, and
performing network FDIR.

5.1 Preliminary Testing of the I/O System Services

The preliminary testing of the VO System Services was performed by creating a sample set
of VO requests and application tasks. The 1/0 requests exercised all of the 1/0
communication, scheduling and synchronization features of the VO User Interface. The
application tasks tested the interprocessor communication of I/O data and status
information. This testing process involved

single and redundant networks of varying topologies
network nodes simulating DIUs
synchronous and asynchronous VO requests of varying priorities and sizes
synchronous and asynchronous application tasks of varying complexities
interprocessor contention for shared resources
channel, data exchange, IOS, network and DIU fault injection
channel and network node/link restoration
spare link cycling

The testing of VO System Services focused on the near simultaneous execution of VO
chains on redundant VO networks (a redundant network is a set of VO networks connected
to the same GPC, where each network consists of a set of redundant DIUs). The tests
primarily examined the performance of the VO System Services when faults were injected
in a redundant network consisting of two VO networks and six DIUs. It was crucial to
verify that the VO requests were executed without interuption on the fault-free network
while VO network FDIR was performed on the faultly network. The types of network
faults that were injected were IOS, link, and node faults. In all test cases, the faults were
identifed (and bypassed if possible), and the VO requests were executed on schedule.

5.2 Performance Metria

Performance memcs were recorded and evaluated for a sample VO application. This
application involved:

1) a redundant I/O service - two 10 node networks
2). network nodes simulating DIUs
3) three application tasks

a) a periodic task scheduled to execute every 100 ms. (10 Hz.)
b) an on-demand task scheduled to execute every 200 ms. (5 Hz.)
c) an on-demand task scheduled to execute every 400 ms. (2.5 Hz.)
d) the periodic task started the on-demand tasks using local events

4) three on-demand 40 requests
5) synchronized application tasks and UO requests

a) the 10 Hz. task starts a two chain VO request which has 8 input transactions per
chain

b) the 5 Hz. task starts a two chain VO request which has 10 input transactions per
chain

c) the 2.5 Hz. task starts a two chain VO request which has 2 input transactions
per chain

The performance memcs were measured on the centralized configuration of the AIPS
engineering model which incorporates the following components:

1) 68010 processors with 7.9 MHz. clocks (CP and IOP)
2) custom UO Sequencers with 7.9 MHz. clocks
3) 2 MBiVsecond VO buses
4) custom network nodes

a) 68701 processor with a 2 MHz. clock
b) requires a 256 microsecond "quiet time" between successive node transmissions

to check input buffers (affects network FDIR)
5) Verdix 5.4 Run Time System

The VO request processing times for the sample application are illustrated in Figures 17 and
18. The timings of the VO System Services procedure and function calls are presented in
Figure 19.

146

r/o Request (2 Chains - 2 Transaction per Chain)
(2.5 Hz. VO request)

25 ms.

Overhead of event processing
Overhead of accepting VO request for processing
Overhead of transaction selectldeselect check
Determine SM Buffer
Write output data and setup chain
Execute Chain
Calculate SM Buffer
Read input data and error processing
Required 10s header time
Required 10s processing time for input transaction
Required network time
Approximate IOR Time Out

-

1.0 ms.
2.0 ms.
0.1 ms.
0.3 ms.
9.6 ms.
3.2 ms.
0.4 ms.
8.2 ms.
150 ps.
235 ps.
334 ps.
1 ms.

VO Request (2 Chains - 8 Transactions per Chain)
(10 Hz. VO request) .

41.1 ms.

Overhead of event processing
Overhead of accepting VO request for processing
Overhead of transaction selectldeselect check
Determine SM Buffer
Write output data and setup chain
Execute Chain
Calculate SM Buffer
Read input data and error processing
Required 10s header time
Required 10s processing time for input transaction
Requkd network time
Approximate IOR Time Out

1.0 ms.
2.0 ms.
0.1 ms.
0.3 ms.
12.9 ms.
6.0 ms.
0.4 ms.
18.2 ms.

235 ps.
1632 ps.
3.8 ms.

150 ps.

Figure 17: YO Request Processing Times for the Sample Application

.

147

FU"
I/O Request (2 Chains - 10 Transactions per Chain)
(5 Hz. ID request)

a) Overhead of event processing
b) Overhead of accepting UO request for processing
c) Overhead of transaction selecddeselect check
d) DetermineSMBuffer
e) Write output data and setup chain
f) Executechain
g) Calculate SM Buffer
h) Read input data and error processing
i) Required 10s header time
j) Required 10s processing time for input transaction
k) Required network time
1) Approximate IOR Time Out

Latency between execution of 2 simultaneous chains

52.6 ms.

1.0 ms.
2.0 ms.
0.1 ms.
0.3 ms.
15.9 ms.
6.8 ms.
0.4 ms.
25.8 ms.
150 ps.
235 ps.
1916 ps.
4.6 ms.

4.1 ps.

Figure 18 YO Request Processing Times for the Sample Application (Continued)

5.3 Future Work

As mentioned previously, the design and implementation of the VO System Services was
completed on the centralized configuration of the AIPS engineering model. With respect to
a centralized system, the I/O System Services is finished. Yet, with respect to the
distributed configuration of the engineering model, the I/O System Services must be
modified. These modifications are required because the I/O Communications Manager and
its associated I/O Network Managers could reside on different remote sites. Accordingly,
the interface between the I/O Communications Manager and Network Manager must be
extended to allow for both intracomputer and intercomputer communication of FDIR,
spare link cycling, and restoration commands and network status information.

148

Write-IOR

a) 2 Chains, 2 Transactions per Chain, 2 Bytes 2.4 ms.
b) 2 Chains, 8 Transactions per Chain, 2 Bytes 6.7 ms.
c) 2 Chains, 10 Transactions per Chain, 2 Bytes 8.2 ms.

ReadIOR

a) 2 Chains, 2 Transactions per Chain, 7 Bytes 3.2 ms.
b) 2 Chains, 8 Transactions per Chain, 7 Bytes 8.4 ms.
c) 2 Chains, 10 Transactions per Chain, 7 Bytes 10.1 ms.

Start-IOR
S topJOR
Transac tion-Error
Transaction-IsB ypassed
Chain-Error
IOR-Has-Overrun
SelectTransaction
Deselect-Transaction
Write-Transaction
IOR-Read y
Clear-IOR-Read y
IOR-Read y-and-Clear

0.5 ms.
0.5 ms.
0.2 ms.
0.2 ms.
0.6 ms.
0.1 ms.
0.5 ms.
0.5 ms.
1.2 rns.
0.1 rns.
0.1 rns.
0.2 ms.

Figure 19: I/O System Services Timings for the Sample Application

149

6.0 REFERENCES

1 . L. Burkhardt, L. Alger, R. Whittredge, and P. Stasiowski, "Advanced Information
Processing System: Local System Services", NASA Contractor Report 18 1767,
March, 1989.

2. G. Nagle, L. Alger, and A. Kemp, "Advanced Information Processing System:
Input/Output Network Management Software", NASA Contractor Report 18 1678,
May, 1988.

3. G. Booch, Software Engineerin? with Ada@, Benjamin/Cummings Publishing Co.,
Inc., Menlo Park, CA, 1983.

PRECEDIMG PAGE B U N K NOT FILMED

~ T E N T I O N A U I BUM
151

APPENDIX A: GLOSSARY OF r/O NETWORKTERMS

Network Hardware

Node: a circuit switching device with 5 ports which can each be independently enabled or
disabled. An enabled port retransmits the logical OR of a l l data which has been received by
any other enabled port. The retransmission is carried out with minimal delay, nominally
one half the period of the transmission clock.

Device Interface Unit (DIU): The smallest unit addressable by an application on an I/O
network. DIUs may be single devices (such as sensors or actuators) or collections of such
devices.

IOP VO Processor.

CP Computational Processor.

GPC: General Purpose Computer consisting of an IOP, a CP, and their interfaces to I/O
and IC networks.

I/O Sequencer (10s): A state machine whose function is to conduct the physical aspects of
communication on an VO network for a GPC. The 10s communicates with one channel of
a GPC by means of a Dual Ported Memory (DPM). The 10s executes a progr& which
has been stored in DPM by the IOP. Part of the DPM behaves as a set of control and status
registers for the 10s. Once a program has been stored in the DPM, communication
between the 10s and GPC can be conducted by means of the control and status registers.
Once the programs have been stored in the DPM, it is only necessary to update the data
required by these programs. Input data must be exchanged across redundant channels for
source congruency and output data must be voted to provide fault masking. Each 10s is a
simplex device which performs its function asynchronously from other IOSes and from the
GPC to which it is connected.

Network Interface: the hardware involved in the connection between a GPC and a network.
It consists of an IOS, 8 K bytes of dual ported memory, and a link (called the root link)
connecting the 10s to a network node (called the root node).

YO Network: a set of nodes and DIUs which are physically interconnected.

YO Network Topology: The specific interconnections among the nodes, GPCs and DIUs in
an VO network.

A- 1

Virtual Bus: A network whose nodes have been configured to allow communication
between a GPC and DIUs or nodes on that network to emulate communication on a serial
bus.

Network Classification

I/O Service: A logical organization imposed on VO network use. A service may be
designated as Regional or Local.

Regional YO Service: I/O activity conducted on a single VO network which is shared
among several GPCs. Since only one GPC may use the network at any given time, GPCs
must contend for use of the network.

Local YO Service: I/O activity conducted on an VO network which is used exclusively by
one GPC. If an VO network which is part of a Local VO Service is physically connected to
more than one GPC, only one of those GPCs will be included in the service at any given
time. A change in the GPC included in the service constitutes a function migration.

Redundant I/O Network: a set of VO networks C O M ~ C W ~ to the same GPC. Each network
in the set consists of a set of corresponding, redundant devices (sensors and effectors). It
is not required that these devices be interconnected by the same topology. To support
function migration, each network in the set may have corresponding connections to more
than one GPC. However, during normal operation, access to this set of networks is
reserved exclusively for one GPC.

Redundant I/O Service: A special form of Local VO Service where VO activity is conducted
on a set of redundant VO networks. This is the only type of service supported on
redundant VO networks. The intent of this service is threefold:

1) to provide simultaneous access to redundant devices on redundant networks

2) to increase the bandwidth of the physical VO networks communicating with

3) to provide applications an uninterrupted flow of I/O data during periods of

during no fault conditions

redundant external devices.

network reconfiguration activity.

Network Protocols

HDLC Protocol: The bit oriented protocol conducted on the data link of the communication
hierarchy .
General YO Protocol: The protocol followed between the 10s and nodesDIUs for the
purpose of conducting VO transactions. All transactions begin with a command frame sent

A-2

from the 10s to a node or DIU. A node always returns a response frame. A DIU is not
required to return a response frame.

Network Trafsic

Frame: An HDLC frame. The smallest unit of communication between an 10s and an
external device (node or DIU) on an UO network.

Frame a
Flag Reld: 01111110 ControlFIeld: lbytb RB G7 bits

Addess M: 1 byte DataField: 1-122bytes FcsFlekf: 2bytes

figure 17: HDLC Frame Format

Command Frame: A frame sent to a single node or DIU from an 10s using the HDLC
protocol. See Figure 17. A command frame to a node is distinguished from a command
frame to a DIU by the number of residual bits which are transmitted. A node command
frame has three residual bits while a DIU command frame has five residual bits.

Response Frame: A frame sent to a GPC from a node or DIU using the HDLC protocol.
See Figure 17. A response frame from a node is distinguished from a response frame from
a DIU by the number of residual bits which are transmitted. A node response frame has
three residual bits while a DIU response frame has five residual bits.

I/O Transaction: A command frame which may be followed by a response frame. A node
always returns a response fiame. A DIU is not required to return a response frame.

I/O Chain: An ordered set of one or more transactions addressed to devices on one VO
network. A chain consists exclusively of either node transactions or DIU transactions. A
chain is the smallest unit of UO activity conducted by an 10s for a GPC.

Redundant Chains: A set of UO chains designed to execute in loose simultaneity on a set of
redundant 1/0 networks. The transactions within each chain are in a one to one
correspondence with the transactions in the other chains. This reflects the one to one
correspondence of redundant DIUs among the networks.

A-3

YO Request: A set of one or more UO chains each of which executes on a different I/O
network. An VO request consists exclusively of one set of redundant or non-redundant
chains. An I/O request is the smallest unit of I/O activity conducted by I/O System Services
for a user.

Chain Execution: The activity carried out by an 10s which results in the transmission of
command frames and the reception of response frames on an UO network. The program
which an 10s executes is under the direct control of I/O System Services and the indirect
control of the user specifying the chain. When a user creates a chain of transactions, certain
parameters must be specified which control the execution of the chain. I/O System
Services then translates these specifications into a program which is stored in DPM and
which executes when I/O System Services starts that chain. The activity is initiated by I/O
System Services but executes independently of the program running in the GPC.

Interprocessor Communications

Companion YO Record: A transaction, chain or I/O request record residing on the IOP that
is the dual of a transaction, chain, or I/O request record created by the user on the CP.
These records are communicated to the IOP from the CP and are required for the execution
and processing of the VO requests.

Event: A signal which is observed by the GPC Real Time Operating System. Events
interrupt the co-processor and are used to activate/deactivate tasks on the co-processor.

Flag: A passive signal that does not interrupt the co-processor. Flags may be observed or
ignored by tasks on the co-processor.

Queue Management

Queue Manager Task: A process which initializes and controls all access to an 1/0 service.

Service Request: A request to process an 110 request, cycle a spare link, or restore a
network element.

YO Request Priority Queue: A prioritized queue which is constructed to control the
processing of I/O requests. The queue is a linked list and is ordered based on the priorities
of the I/O requests. The queue is used by the Priority Queue Manager to determine the next
I/O request to be processed.

Posting Task: A task that is scheduled through the GPC Real Time Operating System
based on the scheduling requirements of its associated I/O request. When scheduling
requirements of the I/O request have been met, the task posts a service request to I/O
request priority queue.

A-4

APPENDIX B: YO SERVICE OPERATING RULES: NETWORKTOPOLOGY, GPC
CON'NECI'MTY AND I/O REQUESI' DEFINITION

I10 Service: Dejinition and Operanon

1) An VO Service provides access either to one regional network or to a set of one or more
local networks.

2) An 40 Service to a set of local networks operates those networks in parallel.

3) UO Requests are specific to one VO Service. It consists of a set of chains, at most one
per network within the service.

4) All chains in an VO Request are started at the same time. The VO Request is completed
and data becomes available to a user, when all chains within the request are completed.

5) Chains on parallel networks can be used to allow corresponding devices on each
network to be accessed at approximately the same time. The degree of simultaneity which
can be achieved is determined by three factors: the rate at which the 10s samples its
Interface Command Register, the amount of time required to issue a Start Chain command,
and the reproducibility of the response time for corresponding external devices.

6) A network is out of service from the time errors are detected on that network until a
reconfiguration has been effected. In this context, a reconfiguration consists of either a
network interface switch or a network reconfiguration. When a network is out of service,
no user chains are executed on that network, however, service to other networks in that VO
Service is not affected.

7) Node status collection and spare link testing will be conducted simultaneously on all
parallel networks within an VO Service.

Network Topology Rules

1) Nodes will be connected in a way which would require at least 3 port failures to isolate
any node or set of nodes from the rest of the network. This is the so called "minimum cut
set".

2) At most one DIU will be connected to a node.

3) At most one GPC will be connected to a node.

4) A node may be connected to both a GPC and a DIU.

B- 1

5) Parallel networks need not be connected in identical ways nor do they need to contain the
same number of nodes or the same number of DIUs. In this way, user can trade
throughput for reliability.

A B

GPC Connectivity and Network Interfaces

C

1) A network has at most one interface per GPC channel, Le. redundant root links to a
network from a GPC come from distinct channels. Thus the maximum number of network
interfaces connecting a GPC to a network is equal to the number of channels in the GPC.

2) Parallel networks are local networks in that they are used exclusively by one GPC for
normal operations for long periods of time. However, more than one GPC may be
physically connected to these networks and are therefore capable of taking over control and
use of these networks in response to failure conditions. These spare connections are made
ready and initialized as if they were to be used but remain dormant until activated by some
higher controlling process such as the system manager.

3) Redundant network interfaces (i.e. root links to the same network) must have their
IOSes occupy corresponding address spaces within their respective channels. This
facilitates dual ported memory testing and allows modifications to chain programs and
chain data to be made simultaneously to all redundant interface to the network.

Network 1 1

Figure B-1: Correct Redundant Root Link ConneCtion
of a GPC to a Network

B-2

A B C

I Network 1 I

1 2 3

F w B-2: Incorrect Redundant Root Link Connection
of a GPC to a Network

K>sK>sK>sK>sK>SK>SK36m IC6
1 2 3 1 '2 3

I10 Request Definition

1) UO Request Definitions determine whether an UO Service is being used for reliability or
throughput. They may access redundant devices simultaneously for greater reliability or
they may access non-redundant devices for greater throughput.

2) An UO Request may run chains on a subset of networks in an VO Service, however,
unused networks in the service remain idle during the execution of the request.

I10 Request Construction

1) A transaction ID returned by the Create Transaction procedure may only be used in one
Create Chain procedure call.

2) A chain ID returned by the Create Chain procedure may only be used in one Create I/O
Request procedure call.

B-3

APPENDIX C: INPUT OUTPUT SEQUENCER (IOS)

1.0 OVERVIEW

The Input Output Sequencer (10s) is an autonomous asynchronous interface between an
AIPS General Purpose Computer (GPC) and an UO network. It resides on the shared bus
of the GPC and can be accessed by either the Computational Processor (CP) or the UO
Processor (IOP). A major function of the 10s is to carry out detailed communication with
VO devices on the network as well as with the network nodes, off-loading the GPC from
lower level UO functions. A simplified block diagram of the AIPS UO organization is
shown in Figure C- 1.

The 10s is connected to a node of the UO network via a bidirectional connection, which is
called a root link. When activated by the GPC, the 10s can transmit on the network via its
root link. The 10s is a memory mapped device that can be accessed andor programmed by
the CP or the IOP to perform a sequence of instructions which is called a chain. The
memory locations within an 10s form a dual port memory that can be accessed by
processors one side and the 10s on the other. GPCs preload data into the memory for
transmission to Device Interface Units (DIUs) or nodes. The 10s interfaces with the DIUs
and nodes in a command response mode, which is referred to as a transaction. During a
transaction the 10s transmits a command to a DIU or node and then, if required, waits a
predetermined time for a response. The 10s writes response data into the locations of
memory specified by the GPC in the chain. An 10s executes a chain only when it is
enabled by its GPC.

Each channel of a redundant GPC may contain an 10s. These IOSs, if connected to
individual networks, can all be active simultaneously. However, if all of the IOSs are
connected to the same UO network, then only one should be enabled to transmit at a time.
A GPC channel may also contain more than one 10s for redundancy. When an 10s is
commanded to start, it first contends (polls) with all other active IOSs for the use of the
network if the network is shared among several GPCs. If it wins, it then has exclusive use
of the network and can send and receive messages to DIUs and nodes. If an 10s loses, it
waits for the network to be quiet (no data traffic) for a fixed amount of time or for another
poll to start before contending again. Provision is made within the 10s for starting a poll
without waiting if a failure is perceived on the network

A detailed explanation of the components of the 10s follows. It includes a description of
the instruction format, memory assignments, register definition as well as chain examples
for the 10s. For the purpose of this document a chain is defined as the instructions that are
executed as a unit. All instructions within the 10s are 4 bytes long. All values are given in
hexadecimal units unless otherwise specified.

c- 1

I
I
I
I

I - - -
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I U
I &

' U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1

I

'__-,,___,,,_-_:

I
I
I
b

I
I U I
I 4
I I

I
b

' U '
I I
I I
I I
I I . - - , _ -

Figure C-1. A I P S VO Organization

c-2

V

t
M E M O R Y

I 4

4F-

ADDRESS
DECODER

C H A I N

REG I STER

DRIUERS

RECEIUERS
SHUTDOWN

E F LATCH

INTERFACE
+&nJJSR I

!!L ENGAGE A

I REGISTER 1 7 - i

Figure C-2. 10s Block Diagram

c-3

2.0.10s ORGANIZATION

A block diagram of the 10s is shown in Figure C-2. The 10s is programmed from a GPC
which has access to the dual port memory and hardware registers. After loading the
.memory with the required chains the GPC then starts the 10s. The 10s can poll and run
the chains without GPC intervention. An overview of the major components of the 10s is

. givenbelow.

2.1 MEMORY CONTROLLER - The memory controller arbitrates memory accesses from
the GPC and the 10s. The memory is time shared between them by the use of processor
signal 4F. When 4F is high the processor can access the memory and when 4F is low the
10s can have access. The memory controller generates chip select, read-write and output
enable at the appropriate times.

2.2 ADDRESS MULTIPLEXER - The address multiplexer selects between the GPC and
10s address buses. The output of the multiplexer is the memory address bus (MA). When
4F is high the processor address bus is connected to memory and when 4F is low the 10s
memory bus is connected to the memory.

2.3 MEMORY - The 10s memory is a byte addressed memory containing 8192 bytes. It is
used to store the chains, input packets and output packets. The first two bytes of memory
are used as the solicited chain pointer and the second two bytes are used as the unsolicited
chain pointer.

2.4 GFC INPUT LATCH - The GPC input latch is a buffer driver used to input byte wide
data from the GPC data bus (PD) to the memory data bus (MD).

2.5 GPC OUTPUT LATCH - The GPC output latch is a buffer driver used to output data
from the memory bus (MD) to the GPC data bus (PD).

2.6 10s INPUT LATCH - The 10s input latch is a buffer driver used to input byte wide
data from the internal 10s data bus @B) to the memory data bus (MD).

2.7 10s OUTPUT LATCH - The 10s output latch is a buffer driver used to output data
from the memory bus (MD) to the internal 10s data bus @B).

2.8 ADDRESS DECODER - The address decoder, decodes the individual hardware
registers which are located in the memory space between 10 and 1F. The addresses of the
hardware registers is given in section 4.

2.9 INTERFACE COMMAND REGISTER - The interface command register is a write
only register that contains the commanded mode. See section 5.3.1 for a detailed
description of the possible modes.

c-4

I
2.10 SEQUENCER - The sequencer is the main control element of the 10s. When started
the sequencer fetches the instructions from memory, stores them internally, decodes and
executes the microcycles by generating the appropriate control signals.

2.11 CHAIN STATUS REGISTER - The chain status register is a read only register that
contains the chain and contention logic status within the 10s. See section 5.2.1.2 for a
detailed description of the status reported.

2.12 INTERFACE STATUS REGISTER - The interface status register is a read only
register that contains the status of the 10s. See section 5.2.1.1 for a detailed description of
the status reported.

2.13 ADDRESS COUNTER - The address counter stores the current memory address that
the 10s is using. It is used to point to where in memory the chain instructions are located.
During an input instruction it points to the location where the incoming data byte is to be
stored. In an output instruction it points to the byte to be output when the HDLC chip
requests a byte. It is loaded during instruction fetches and incremented during the
instruction microcycles.

2.14 ADDRESS REGISTER - The address register contain the fixed addresses used in the
instructions. During an input instruction it contains the address of the HDLC input
register. During an output instruction it contains the address of the HDLC transmitter
holding register.

2.15 DATA COUNTER - The data counter contains data that is incremented during an
instruction. During an input instruction it accumulates the byte count of the incoming data.
During an output instruction it counts the number of bytes outputted until the message is
complete at which time it signals the sequencer to terminate the instruction.

2.16 DATA REGISTER - The data register is used to temporarily store data within an
instruction. During an input instruction it holds the incoming byte from the HDLC receiver
register until a memory cycle can be performed to store it. During an output instruction it
holds the next byte to be outputted until the HDLC transmit holding register requests it.

2.17 HDLC - The HDLC device contains independent transmitter and receiver sections.
The HDLC transmitter section receives the data bytes, appends opening and closing flags,
encodes, and transmits the data. The receiver section searches the data stream for an
opening flag. When it detects one, it synchronizes with the data fields and decodes the data
stream into bytes for storage. In both modes the device generates the handshaking signals
necessary to run the interface. See Sections 5 for details on the operation and control of the
HDLC registers.

c-5

2.18 FLAG SHUTDOWN - The flag shutdown logic guarantees that the external IO
network transmissions lines are always left in the same state after use. This allows the data
and poll logic to utilize the same transmission lines. See section 6 for details.

2.19 DRIVERS and RECEIVERS - These drivers and receivers allow the 10s to interface
to the IO network. The drivers are enabled by an engage line from the GPC. The receivers
are always enabled but the input is controlled by the HDLC device.

2.20 POLL LOGIC - The poll logic which allows the 10s to contend with other IOSs to
gain control of the IO network. When enabled the poll logic monitors the IO network
waiting for a quiet time and then starts a poll. If it wins it starts a solicited chain, and if it
loses it waits for the next poll or quiet and mes again. See section 7 for additional details.

2.21 TIME DRIVER - The time driver allows the chain to read a time byte that appears on
the shared bus.

3.0. INSTRUCTION FORMATS

The 10s can execute a limited number of instructions to perform its functions. The
following paragraphs detail the form and function of the 10s instructions.

3.1. NOP (0000 OOO0)- This instruction updates the chain pointer to the address of the
next sequential instruction. At the end of the NOP it will fetch that instruction.

3.2. BRANCH (2000 dddd)- This instruction will fetch the instruction contained at
location 'dddd' and begin its execution. The Chain Pointer will be updated to point to the
next instruction (ddddd).

3.3. MOVE (a s s dddd)- This instruction will move a byte, located at any location lss'
within the first 25610 bytes of 10s memory, to the byte location specified by 'dddd.
MOVE can be used to store the current value of a hardware register or store a preset value
into a register.

3.4. MOVE IMMEDIATE (6Oxx dddd)- This instruction allows a constant, xx, to be
stored into the destination dddd.

3.5. INPUT (801B dddd)- This instruction will store incoming HDLC bytes in the buffer
area specified by 'dddd'. At the start of execution of this instruction the byte reserved for
the input byte count is set to zero and the current value of the contention status is also
stored within the buffer. As bytes are received they are stored at the specified buffer
locations and an internal byte count incremented. A valid message always ends with a
closing flag, which causes the 10s to then store the byte count, HDLC status registers and

C-6

.

the TIME byte within the incoming packet buffer area. The INPUT instruction has now
completed and the next sequential instruction is fetched and executed. The maximum
number of data bytes that a single instruction can store is 12210. If the INPUT contains
more than 12210 data bytes, data will be lost. However, the buffer will never exceed the
12810 bytes allotted to it. The byte count which includes the status bytes, will also never
exceed 80 (12810). This instruction can also end if the time allotted for response is
exceeded (the value programmed into the timer is reached without a data byte being
received). However, in this situation none of the status information (HDLC IR & SR
registers, time and byte count) is saved. An incoming data packet will always have the
following format.

Byte count

HDLC IR register

HDLC SR register

contents of Chain Status Register

data (fmt byte)

data (last byte received)

3.6. OUTPUT (EOlC ssss)- This instruction will transmit the bytes specified in the buffer
starting at location lssss + 1'. The first byte at location 'ssss' contains the value of the
expression, 80 - NB, where NB is the number of bytes to be transmitted. This instruction
terminates when all the bytes have been transmitted.

4.0. MEMORY MAP

The following is the assigned memory locations in the dual port memory space of the 10s.
Addresses 10 - 1F are hardware registers, however they are addressed the same as the
RAM locations. All memory addresses, including the hardware registers are accessible
from the CPU.

ADDRESS FUNCTION

o R / w Solicited Chain Pointer - High Byte (RAM)
1 R/w Solicited Chain Pointer - Low Byte (RAM)
2 R / w Unsolicited Chain Pointer - High Byte (RAM)
3 m Unsolicited Chain Pointer - Low Byte (RAM)

c-7

10
11
11
12
13
14
15
16
17
18
19
1A
1B
1B
1 c
1 c
1D
1E
1F

R
W
R
W
W
W
R

R/w
R/w
R/w
R
W
R
W
R

Chain Status Register
Interface Command Register
Interface Status Register
Timer Limit Register
Poll ID Register - 6 bit polling address
Poll Prio Register-3 bit prio & polling level
Time
Reserved
Reserved
HDLC Control Register 1 (CR1)
HDLC Control Register 2 (CR2)
HDLC Control Register 3 (CR3)
HDLC Receiver Holding Register (RHR)
Address Register (AR)
HDLC Interrupt Register (IR)
Transmit Holding Register(THR)
HDLC Status Register (SR)
Reserved
Reserved

With the exception of the addresses specified above, the rest of the dual port memory space
can be used for any desired function. However, it should be noted that the MOVE
instruction can only use the first 25610 addresses for the source byte.

5.0. REGISTERS

A description of the hardware registers and their use is contained in the following
paragraphs. The hardware can execute two types of chains, solicited and unsolicited.
Solicited chains are defined as command response chains and are meant to be executed
when the GPC has control of the network. Unsolicited chains are defined as those that are
performed when the GPC does not have control of the network but must accept all frames
addressed to it. Unsolicited chains are not defined on the IO network, however, they are
used as a vehicle while waiting for a poll to be won. On the IC network using the ICIS,
unsolicited chains are executed whenever the GPC does not have the network, including
while waiting for a poll to be won.

5.1. READ/WRITE REGISTERS

5.1.1. CHAIN POINTER REGISTERS

5.1.1.1. SOLICITEiD CHAIN POINTER (ADDR = 00 & 01) - The solicited chain pointer
is used by the 10s to indicate where the next instruction of a solicited chain is located.
When a new chain is to be started this location is loaded with the address of the first

C-8

instruction to be executed. It must be loaded before an execute chain command is issued.
As each chain instruction is fetched, this location is updated to point to the next sequential
instruction. The GPC can read this location at any time. However, since the 10s writes
the locations a byte at a time and the GPC can read them as a word, the value read by the
GPC may be incorrect if a chain is executing. The GPC should not attempt to write these
bytes while a chain is executing, since it cannot be guaranteed that the 10s is not presently
also modifying them.

5.1.1.2. UNSOLICITED CHAIN POINTER (ADDR = 02 & 03) - The unsolicited chain.
pointer is used by the 10s to indicate where the next instruction of an unsolicited chain is
located. When a new chain is to be started this location is loaded with the address of the
fmt instruction of the unsolicited chain to be executed. It must be loaded before an execute
chain command is issued. As each chain instruction is fetched, this location is updated to
point to the next sequential instruction. The GPC can read this location at any time.
However, since the 10s writes the locations a byte at a time and the GPC can read them as
a word, the value read by the GPC may be incorrect if a chain is executing. The GPC
should not attempt to write these bytes while a chain is executing, since it cannot be
guaranteed that the 10s is not presently also modifying them. Unsolicited chains are
identical to solicited chains and can execute any mix of instructions.

5.1.2. HDLC READ/WRITE REGISTERS

The following is extracted from the Western Digital data sheets on the HDLC chip (WD
1935). Definitions of bit polarity and sense have been modified to reflect what is seen by
the A I P S system.

5.1.2.1. CONTROL REGISTER #1 (CR1) (ADDR = 18) - Control register 1 is used to
specify the transmitter parameters and the transmitter and receiver enables. It can be loaded
by a GPC or by a MOVE instruction in the chain.

NOTE: This register must always be loaded after CR2 and/or CR3. If CR2 and/or CR3
are ever changed, CR1. must again be reloaded after the change even if there are changes
being made to CR1.

7 6 5 4 3 2 1 0
ACT ACT TC TC T U T U DTR MISC
REC m 1 0 1 0 OUT

5.1.2.1.1. ACT REC (bit 7) - Activate receiver bit when set to a ZERO (0), the receiver is
enabled to accept a data stream. When set to a ONE (l), the receiver will ignore any frames
on the network.

c-9

5.1.2.1.2. ACT TRAN (bit 6) - Activate transmitter bit when set to a ZERO (0), the
encoder and transmitter are enabled to output onto the network. When set to a ONE (1) the
HDLC device will not transmit data.

5.1.2.1.3. TC1 and TCO (bits 5 and 4) - The transmit command bits program the device
into the requested mode. In AIPS, the OUTPUT instruction will function properly only in
the data mode. These bits and the modes that they generate are as follows:

bit bit MODE FUNCTION
5 4

1 1 data Outputs the contents of the transmitter

1 0 abort Generates an abort message (not used

0 1 flag Transmits one flag character (not used

0 0 FCS Generates the two CRC bytes and a

holding register

on AIPS)

on AIPS)

closing flag (not used on AIPS)

5.1.2.1.4. TCLl and TCLO (bits 3 and 2) - These bits control the number of bits per
character from the transmitter. In AIPS this has been defined as 8 bit bytes. The definition
of these bits follows:

bit bit BITS PER
3 2 CHARACTER

1 1 8
1 0 7
0 1 6
0 0 5

5.1.2.1.5. DTR (bit 1) - Data Terminal Ready, a modem signal that is not used in this
design and should be programmed'to a ONE (1).

5.1.2.1.6 MISC OUT (bit 0) - Miscellaneous Output, a control signal not implemented in
this design and should be programmed to a ONE (1).

5.1.2.2. CONTROL REGISTER #2 (CR2) (ADDR = 19) - Control register #2 specifies
the receiver parameters and other control functions as defined below. It can be loaded by a
GPC or by a MOVE instruction in the chain.

c- 10

7 6 5 4 . 3 2 1 0

EXT ADDR EXT RCL RCL LOOP SELF AUTO
CONT COMP ADDR 1 0 TEST FLAG

5.1.2.2.1. EX" CONT (bit 7) - This bit extends the HDLC control field. It is not used on
AIPS and must be programmed to a ONE (1).

5.1.2.2.2. ADDR C O W (bit 6) - This bit enables the on-chip address comparator. If set
to a ZERO (0), the first byte after the opening flag will be compared to the byte stored in
the AR register. If equal, the data bytes that follow will be output. If address compare is
enabled, and the address does not compare, all data bytes following will be ignored. If bit
six is set to a ONE (1) then address comparison is not performed in the chip and all bytes
between the opening and closing flag are presented to the interface. In AIPS, the 10s and
the NODES do not use the address compare function but the ICIS does.

5.1.2.2.3. EXT ADDR (bit 5) - This bit extends the HDLC address field. It is not used on
AIPS and must be programmed to a ONE (1).

5.1.2.2.4. RCLl and RCLO (bits 4 and 3) - These bits specify the receiver character
length. In AIPS this has been defined as 8 bit characters. The definition of these bits is as
follows :

bit bit BITS PER
4 3 CHARACTER

1 1 8
1 0 7
0 1 6
0 0 5

5.1.2.2.5. LOOP (bit 2) - Specifies HDLC loop mode, a test function, not implemented in
the 10s. This bit should always be programmed to a ONE (1).

5.1.2.2.6. SELF TEST (bit 1) - Chip diagnostic mode, not implemented through the 10s.
This bit should always be programmed to a ONE (1).

5.1.2.2.7. AUTO FLAG (bit 0) - When this bit is set to a ZERO (0) and the transmitter is
enabled, the chip will issue constant flag characters between frames. The 10s design
utilizes this function and therefore must be set to a zero during an output instruction.

c-11

5.1.2.3. CONTROL REGISTER #3 (CR3) (ADDR = 1A) This register is used to control
the number of residual bits in a transmission. It can be loaded by a GPC or by a MOVE
instruction in the chain. The definitions of these bits are as follows:

7 6 5 4 3 2 1 0

X X X X X TRES TRES TRES
2 1 0

5.1.2.3.1. BITS 7 through 3 - Unused

5.1.2.3.2. TRES 2 - 0 (bits 2, 1 and 0) - These bits define the number of residual bits to
be sent as the last character in a transmission. Messages sent to and from a NODE contain
three (3) residual bits. Messages to and from DIUs contain five residual bits. The
definition of these bits are as follows:

bit bit bit RESIDUAL BITSFRAME
2 1 0

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

No residual bits sent
1
2
3
4
5
6
7

5.2. READ ONLY REGISTERS

5.2.1 STATUS REGISTERS

5.2.1.1. INTERFACE STATUS REGISTER (Read Only) (ADDR = 11) - This register
contains status of the interface.

5.2.1.1.1. UNSOLICITED INPUT RCVD (bit 0) - Set if any unsolicited input is
received. This bit is set when the end of that message is detected, and reset whenever the
IOP reads this register.

5.2.1.1.2 STUCK ON HIGH (bit 1) - This bit is set to a one, if the receiver has been
high for the IDLE time. It is cleared whenever a transition is detected.

c- 12

5.2.1.2. CHAIN STATUS REGISTER (ADDR = 10) - This register contains status of
both the chain and the contention logic.

CHAIN STATUS REGISTER (Read Only)

7 6 5 4 3 2 1 0

Comp State Default Tx Tx RCV RCV
Chain Contention Possession Data Poll h Y h Y

Fail Fail Fail Good

5.2.1.2.1. CHAIN COMPLETE (bit 7) - This bit is set whenever the current chain has
completed. Chain complete is defined as an 10s transition from solicited mode to
unsolicited mode without the POLL bit in the command register set. It is reset whenever
the poll bit is changed to a one in the interface command register or the 10s transitions from
the unsolicited mode to the solicited mode.

5.2.1.2.2. CONTENTION STATE (bits 6 and 5) - This is the present state of the poll
logic only. The following are the possible states that can be indicated.

5.2.1.2.2.1. INACTIVE, BUS RELEASED (00) Both bits are zero whenever the 10s is
not attempting to gain control of the network.

5.2.1.2.2.2. WAIT (01) This 10s has been instructed to acquire the network, however no
POLL has completed since the request occurred.

. 5.2.1.2.2.3. ATTEMPTED (10) This 10s has entered and lost at least one POLL
sequence since being commanded to acquire the network.

5.2.1.2.2.4. POSSESSES (11) This 10s presently has possession of the network.

5.2.1.2.3. POSSESSION DEFAULT (bit 4) - Indicates that the 10s possesses the
network and detected an incoming POLL length bit on the network. If a chain is in
progress when this happens, it will continue to completion. This bit is reset whenever the
POLL bit in the Command Register is set to zero.

5.2.1.2.4. DATA TX FAIL (bit 3) - Indicates that a data bit was detected at the receiver
during a command frame transmission. The chain will continue to completion. This bit is
reset whenever the POLL bit in the Command Register is set to zero. This bit can only be
set during a network possession.

5.2.1.2.5. POLL TX FAIL (bit 2) - Indicates that a data length bit was detected during a
Poll Sequence. This bit is reset whenever the POLL bit in the Command Register is set to
zero.

C-13

5.2.1.2.6. ANY RCV FAIL (bit 1) - Indicates that at least one response frame has been
received with a protocol error in it. It is reset whenever a new poll begins or the 10s
transitions from the unsolicited mode to the solicited mode.

5.2.1.2.7. ANY RCV GOOD (bit 0) - Indicates that at least one response frame has been
received without a protocol error. It is reset whenever a new poll begins or the 10s
transitions from the unsolicited mode to the solicited mode.

5.2.2. HDLC READ ONLY REGISTERS

5.2.2.1. RECEIVER HOLDING REGISTER (RHR) (ADDR = 1B) This read-only
register contains the received bytes as they are decoded from the frame. When executing an
input instruction the 10s automatically reads this location and stores the received characters
into the specified location in the dual port memory.

5.2.2.2. INTERRUPT REGISTER (IR) (ADDR = IC) This read-only register contains
status information on the state of the HDLC operation. It can be read by the GPC or with a
MOVE instruction within a chain. Bits 7 through 3 will accumulate information such that if
the IR is read after several operations, it will have the "OR" of all those frames. The
defmition of the bits within this register is as follows:

7 6 5 4 3 2 1 0

REOM REOM XMlT XMlT DISC DRQI DRQO INTRQ
NO WITH NO WITH
ERR ERR ERR URUN

5.2.2.2.1. REOM NO ERR (bit 7) - When equal to a ZERO, this bit indicates that the
frame was received without errors. If this bit is read before the closing flag is detected, it
will not have been updated from the last frame.

5.2.2.2.2. REOM WITH ERR (bit 6) - When equal to a ZERO, this bit indicates that the
frame was received with errors. If this bit is read before the closing flag is detected, it will
not have been updated from the last frame. The errors that are reported here are: CRC,
overrun, invalid frame and aborted frame.

5.2.2.2.3. XMIT NO ERR (bit 5) - When equal to ZERO, this bit indicates that the
transmitted frame had completed without undermn errors.

5.2.2.2.4. XMIT WITH URUN (bit 4) - When equal to ZERO, this bit indicates that the
transmitted frame had extra bytes inserted by the chip because the data was not available to
the transmitter in the allotted time.

C- 14

5.2.2.2.5. DISC (bit 3) - This bit is used with modems and in this system has no
meaning.

5.2.2.2.6. DRQI (bit 2) - When set to a ZERO, this bit indicates that there is a byte
available in the Receiver Holding Register (RHR). Reading the RHR sets this bit to a
ONE. The hardware uses a buffered copy of this bit when storing bytes into dual port
memory during an input instruction.

5.2.2.2.7. DRQo (bit 1) - When set to a ZERO, this bit indicates that the Transmit
Holding Register (THR) is empty and requires another character to prevent an underrun
error. Storing a byte into the THR sets this bit to a ONE. The hardware uses a buffered
copy of this bit during an output instruction to read a byte from the dual port memory and
store it into the THR.

5.2.2.2.8. INTRQ (bit 0) - This bit is set to a ZERO whenever at least one of the other bits
in the IR register is set to a ZERO. This bit is set to a ONE whenever the IR is read. A
buffered copy of this bit is used to terminate a normally completing input or output
instruction.

5.2.2.3. STATUS REGISTER (SR) (ADDR = 1D) -. This read-only register contains
status information that, when used in conjunction with the contents of the Interrupt
Register, define the cause of the error.

7 6 5 4 3 2 1 0

RI CD DSR MISC RCVR RRES RRES RRES

ERR /ERR /ERR
IN IDLE 2 1 0

5.2.2.3.1. RI (bit 7) - A modem signal not implemented in this interface.

5.2.2.3.2. CD (bit 6) - A modem signal not implemented in this interface.

5.2.2.3.3. DSR (bit 5) - A modem signal not implemented in this interface.

5.2.2.3.4. MISC IN (bit 4) - An input discrete not used in this interface.

5.2.2.3.5. RCVR IDLE (bit 3) - When set to a ZERO, the receiver is idle, i.e. a frame is
not in process.

5.2.2.3.6. RRES2 /ERR (bit 2) - This bit has a dual role. If bit 7 in the Interrupt Register
is a ZERO, then this bit is part of a binary number (see section 5.2.2.3.8) representing the

C-15

number of residual bits received. If bit 6 in the Interrupt register is set to a ZERO, and this
bit is set to ZERO then an aborted or invalid frame was detected.

5.2.2.3.7. RRES1 /ERR (bit 1) - This bit has a dual role. If bit 7 in the Interrupt Register
is a ZERO, then this bit is part of a binary number (see section 5.2.2.3.8) representing the
number of residual bits received. If bit 6 in the Interrupt register is set to a ZERO, and this
bit is set to ZERO then an overrun error was detected. An overrun error indicates that a
received byte was not removed from the Receiver Holding Register before the next byte
was received. That fmt byte will be lost.

5.2.2.3.8. RRESO /ERR (bit 0) - This bit has a dual role. If bit 7 in the Interrupt Register
is a ZERO, then this bit is part of a binary number (see below) representing the number of
residual bits received. If bit 6 in the Interrupt register is set to a ZERO and this bit is set to
ZERO, then a CRC error was detected.

bit bit bit RESIDUAL BITSFRAME
2 1 0

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

No residual bits sent
1
2 -
3
4
5
6
7

5.2.3. TIME (read only) (ADDR = 15) - This byte contains a value that is slaved to the
system timer, incremented by a 6610 microsecond clock and capable of measuring
16.83010 milliseconds. It can be read by the GPC or by a move instruction in the chain. It
is automatically appended to all incoming frames that complete in a valid manner.

5.3. WRITE ONLY REGISTERS

5.3.1 INTERFACE COMMAND REGISTER (Write Only) (ADDR = 11) - This register
contains the necessary control bits to operate the 10s. The following are valid commands
used to control the 10s. The END CHAIN command transitions the 10s from solicited to
unsolicited mode. The STOP CHAIN command turns the 10s off.

START CHAIN WITH POLL = 94

START CHAIN WITHOUT POLL = 80

C- 16

END CHAIN = 84

STOP CHAIN = 20 (followed by a 00 command to prime the interface for
the next command)

INTERFACE COMMAND REGISTER (Write Only)

7 6 5 4 3 2 1 0

EXECUTE x STOP POLL SPOLL EXECUTE X X
CHAIN IMM UNSOL

CHAIN

5.3.1.1 EXECUTE CHAIN (bit 7) - When only the execute chain bit is set to a one (l),
this commands the hardware to fetch and start executing instructions starting at the address
stored in the Solicited Chain Pointer. The chain will start even if a Poll was neither started
nor won. If however, a poll is to be won first before starting the chain, then bits 7 , 4 and 2
must be set to a one. The hardware will then start the polling logic, start an unsolicited
chain pointed to by the unsolicited chain pointer (usually an input instruction) and when a
poll is won, automatically start the chain at the location pointed to by the solicited chain
pointer.

5.3.1.2. Bit 6 - Not used by the 10s.

5.3.1.3. STOP IMM (bit 5) - When the stop immediately bit is set to a one (1) the
hardware will turn off the 10s. Whatever function the 10s is now performing will be
terminated. This allows the GPC to stop the hardware if it is caught in a loop or otherwise
malfunctioning .

5.3.1.4. POLL (bit 4) - Whenever the poll bit is set to a one (1) the logic will attempt to
gain control of the network by joining the next possible poll sequence. At the end of a
chain this bit must be reset.

5.3.1.5. SPOLL (bit 3) - Whenever the spoll bit is set to a one (l), the hardware will
immediately start to poll. The hardware will not wait for the start of a new poll from
another site or an idle condition on the network. At the end of a chain this bit must be
reset.

5.3.1.6. EXECUTE UNSOL CHAIN (bit 2) - This bit is only recognized by the
hardware when set in conjunction with the execute chain bit, bit 7. If bits 7 and 2 are both
set to a one (l), the hardware will execute the chain starting at the location pointed to by the
unsolicited chain pointer. If a GPC desires to fxst gain control of a network, it sets bits 7,
4 and 2 to a one and all others to a zero (0). The hardware will enable the polling logic,

C-17

start the unsolicited chain at the location pointed to by the unsolicited chain pointer (usually
an input instruction) and when a poll is won, automatically start the chain at the location
pointed to by the solicited chain pointer.

5.3.1.7. Bits 1 and 0 are not used.

5.3.2. HDLC WRITE ONLY REGISTERS

5.3.2.1. ADDRESS REGISTER (AR) (ADDR =1B) - This write-only register contains
the address that the chip is to use for comparison if on-chip address recognition is being
used. If on-chip address detection is not used, the contents of this register will be ignored.

5.3.2.2. TRANSMIT HOLDING REGISTER (THR) (ADDR = 1C) - This write-only
register holds the next data byte to be transmitted. The hardware loads a byte into this
register during an Output instruction whenever DRQo is set.

5.3.3. TIMER LIMIT REGISTER (Write only) (ADDR = 12) - The timer limit register
contains the current value to be used to time out an instruction. A non-zero value written to
the timer limit register allows the timer to function. The timer is initialized at the beginning
of each instruction and as each incoming data byte is detected. If an instruction does not
complete or an incoming data byte is not detected in the programmed number of
microseconds, the current instruction is terminated and the next sequential instruction
started. A new value stored in the timer limit register will be accepted when the next
instruction is started or the next incoming byte is accepted during an input instruction.

5.3.3.1. TIMER LIMIT VALUE The timer limit is the number of periods of the clock 2F.
2F has a period of approximately 2 microseconds. The timer has a range of 2 to 512
microseconds.

5.3.4. POLL REGISTERS

5.3.4.1. POLL PRIORITY REGISTER (Write only) (ADDR = 14) - The Poll Priority
Register contains the six high order polling bits. The three bits labeled PRIO, are used for
the initial priority of this 10s. They will automatically increment after each poll sequence
loss until they contain all ones, at which time incrementing is inhibited and the maximum
priority held. Since the initial state of the PRIO bits are not saved, this register must be
reloaded whenever the initial polling state is required. The three bits labeled LEVEL, are
the high order bits of the poll sequence. For the IO network LEVEL 2 is set to a one,
LEVEL 1 and LEVEL 0 are set to a zero. It can be loaded by a GPC or by a MOVE
instruction in the chain.

c-18

7 6 5 4 3 2 1 0

X LEVEL LEVEL LEVEL x PRIO PRIO PRIO
2 1 0 2 1 0

5.3.4.2. POLL ID REGISTER (Write only) (ADDR = 13) - The Poll ID register contains
the six (6) low order bits used in the polling procedure. These bits normally contain the
address that this 10s uses for polling. It can be written into by the GPC or by a MOVE
instruction within the chain.

7 6 5 4 3 2 1 0

X X BIT5 BIT4 BIT3 BIT;! BIT1 BITO

6.0. FLAG SHUTOFF SYNC

The 10s uses the same 10 network lines to communicate and to poll. In order to be able to
perform both functions on the same lines all operations must leave the lines in a known
state. The HDLC protocol allows the signalling lines to be left in either state, and in fact
the device used to generate the HDLC protocol does leave the line in either state depending
upon the data content of the message. The 10s contains logic which upon sensing the end
of a message utilizes the closing flags to turn off with the line in a low state without
generating any extraneous data. When the next output message is started, the first flags are
used to turn the logic back on to the state that the HDLC device attempted to leave the line.
Again this is done without generating any extraneous bits. The polling logic is fabricated
so as to always end with the line low.

7.0. POLLING

The 10s contains logic which allows it to contend with the other IOSs for use of the IO
network. If the 10s is to contend for the network, the bits in the interface command
register must be set to execute, poll and execute unsolicited mode. The logic will start the
chain pointed to by the unsolicited pointer and simultaneously prime the polling logic. The
reason for having a unsolicited chain is to give the 10s a place to wait for the poll to
complete. Therefore, there must be an input instruction without the timer running where
the 10s will "hang" waiting for the poll to be won.

The polling logic waits for either a poll to begin or the bus going quiet for 512
microseconds. When either occurs, the logic will assert a start bit for 48 microseconds.
This gives all other IOSs time to recognize the start of a poll and join if required. At the
end of the poll bit the logic compares the state of its input line with the state of its output

C- 19

line. If another 10s is joining the poll, the input line will also be high and the 10s must
continue to poll to determine who will win. It next asserts the fixed priority bits, one at a
time for 28 microseconds, followed by the variable priority bits and its address bits. At the
end of each 28 microsecond period it compares its output to what it perceives on the bus.
If what it hears is the same as what it is transmitting it must continue to the next bit as no
decision can be made. If it hears a zero while it is transmitting a one, then it knows it has
won because it has a higher value than all others that are contending. If it hears a one while
it is transmitting a zero, then it knows it has lost because it has a lower value than at least
one other contender, and it will stop transmitting and wait for another poll to begin. When
the 10s decides that it has won it will abort the unsolicited chain and do a context switch to
the solicited chain and start to execute it.

The variable priority bits are incremented after each poll sequence loss until they reach the
maximum value of 7. They will remain at this value until written into by the program or the
chain. If an 10s detects a data bit during its polling it will terminate the poll and set an
error bit.

8.0. DUAL-PORT OPERATION

The 10s utilizes a time shared 8k x 8 memory for program and input output buffer storage.
This memory can be alternately accessed by the GPC and the 10s. Each site has
independent access to the memory for four CPU clock periods.

8.1 TIMING The dual-port memory utilizes the CPU clock signal 4F, which has a period
of eight CPU clacks. When 4F is high the GPC has access to the memory and when 4F is
low the 10s has access to the memory. In the following discussion the 10s timing is
discussed, the timing as it pertains to the GPC is identical but only happening on the
opposite phase of 4F.

If the 10s requires the use of the memory it assert the signal MREQ. MREQ is recognized
on the first rising edge of CPU clock after 4F falls, which causes a chip select to the
memory to be asserted. (4F changes state on a falling edge of CPU clock.) Chip select is
three clock periods wide. The memory cycle is terminated by MCLR being asserted for
one CPU clock period and chip select being deasserted.

When a write is specified, the readwrite line will be low. One clock period after chip select
is asserted, a write enable signal to the memory is asserted. If a read is specified, the
reawwrite line will be high and on the next rising edge of CPU clock after chip select is
asserted, an output enable will be asserted. By delaying output enable, none of the
memory switching transients are seen.

The operation of the dual-port memory from the GPC side is identical except the memory
request is initiated with the falling edge of PSEL and terminated with the assertion of

c-20

a

CLRP. The GPC can only make memory requests during the time that 4F is high. The
address multiplexers are also driven by 4F.

9.0. HDLC PROTOCOLS

The HDLC bit orientated protocol was chosen for use on AIPS. HDLC allows automatic
address detection, control information and a cyclic redundancy error word to detect
transmission errors. In the 10s automatic address detection and the control byte are not
used. The 10s operates in a command response mode at all times. It sends a message to a
site and then waits for a response only when it has control of the IO network.

An HDLC frame contains an opening flag, address byte, control byte, data bytes (in AIPS
up to 11910), FCS byte, FCS byte and a closing flag. The opening and closing flag are
identical and consist of a zero, followed by six ones and a zero. It is not possible for a flag
to look like data since the HDLC protocol specifies that within the data field after five
continuous ones a zero is added.

10.0. ENGAGE

The AIPS GPCs generate a voted engage signal which is used to enable external functions.
In a faulty GPC this signal will not be asserted. The 10s uses this signal to enable its bus
driver that connects it to the IO network. Therefore, a faulty GPC and/or faulty 10s can be
disconnected and prevented from bring down the IO network.

11.0. BUFFER FORMATS

A typical chain will contain both input and output instructions. Each of these instructions
must have buffer areas within the IOS's memory. The input buffers contain the messages
that the 10s receives from Nodes and DIUs. The output buffer areas contain the messages
that the 10s sends to Nodes and DIUs. There are no restrictions on where in memory
inputs or output are stored. The following is the format of the input and output messages.

11.1. INPUT BUFFER FORMAT: The third and fourth byte of the input instruction point
to a location in memory where the 10s will store an incoming message. Each incoming
message contains a five byte preamble before the data part of the message. The first byte
contains the byte count, which is the number bytes received plus the four additional bytes
of the preamble. This can be used as an offset to point to the last byte of the buffer. If the
input instruction is terminated by the timer expiring, then this byte will contain zero even if
a partial message had been received before the message stopped. The second and third
bytes contains the HDLC IR and SR registers respectively. These bytes are used to check
for HDLC protocol errors. The fourth byte contains a time tag as ncorded at the end of the
input instruction. The fifth byte contains the contents of the Chain Status Register. From

c-21

the sixth byte on is the data content of the message. To recap, input buffers within the
memory all have the following format:

Byte Count

HDLC IR Register

HDLC SR Register

T i

Content of Chain Status Register

data (first byte)

data (last byte)

In the case of a response from a Node the input format will be as follows:

Byte Count

HDLC IR Register

HDLC SR Register

T i

Content of Chain Status Register

Node Address

Port Activity Seen

Transmission Errors Seen

Valid Frame Seen

Error in Node Messages Seen

Node Port Configuration

Sum Check

c-22

Residue Bits (3 bits residue + 5 bits FCS)

FCS (next 8 bits of FCS)

FCS (last 5 bits of FCS + 3 bits of pad)

11.2. OUTPUT BUFFER FORMAT: The third and fourth bytes of the output instruction
contain the address within the 10s memory of the output buffer for this instruction. The
byte located at this location is 80 - NB, where NB is the number of bytes in this output
message. Following the byte count is the rest of the message. Since the longest message
that can be received has been defined as 12810 bytes, and each input message contains a 5
byte preamble and 2 FCS bytes, the maximum data part of an output message can only
contain 12110 bytes. If more than 12110 bytes are specified, the receiving location will
truncate the message. The format of the output buffer is as follows:

Byte Count (80 - NB)

data

last data byte

12.0. EXAMPLE CHAINS

The following are intended to show how a Chain is programmed in the 10s.

12.1 EXAMPLE #1 - This example shows a chain which programs the HDLC chip and
then does an Output frame followed by an input frame. The GPC stores the following
values into the IOSs memory. (The 10s is a byte oriented device. For simplicity, the
columns value or contents are two bytes and the columns labeled 10s location or address
show the address of the high order byte. i.e. 0100 @ 8CX0oO means that a 01 is stored at
location 8CXOOO and a 00 is stored at location 8CXoO1. The value of X indicates in which
channel of a GPC the 10s is located. Le. X = 1 for channel A, X = 2 for channel B, X = 4
for channel C. The high order bit of X is the high order bit of the address of the dual-port
memory.)

C-23

The GPC writes the following locations:

xx 8CX013 Value of low order polling bits
4y 8CX014 Value of high order polling bits
94 8CX011 Commands 10s to execute chain, execute unsolicited and

poll

The last store writes into the interface command register which instructs the 10s to enter a
POLL as soon as it detects one starting, or to start a POLL if it sees the bus go idle. The
10s meanwhile starts to execute the unsolicited instructions starting at location 200. As
soon as this 10s thinks it won a POLL, it terminates the unsolicited chain and starts the
solicited chain at location 100. (All values below are given in HEX.)

INST ADDRESS CONTENTS DESCRIPTION

-- 8CX000 0100 Solicited Chain Pointer
-- 8CX002 0200 Unsolicited Chain Pointer

0005 8CX100 4015 MOVE the current value of
8CX102 OlFl time to location OlFl (This could

be done to find out when the
solicited part of the chain started)

o006 8CX104
8CX 106

0007 8CX108
8CXlOA

0008 8CXlOC
8CXlOE

0009 8CX110
8CX112

401C
01F2

6oFC
OOlA

6oFE
0019

60BF
0018

Read the IR register to clear
any prior status

Store an FC in CR3. Sets the
chip to send 3 residual bits.

Store an FE in CR2. Puts the
chip in the auto flag mode. This is
mandatory to guarantee that all
receivers will see the flag
character and no extraneous data.

Store a BF in CR1. This
enables the chip in the data mode
and turns on the transmitter. (CRI
must be loaded after CR2 and
CR3) Flags will now be sent until
data is loaded into the THR.

C-24

0010 8CX114 EOlC
8CX116 1000

,

001 1 8CX118
8CX11A

0012 8CX11C
8CXllE

0013 8CX120
8CX122

0014 8CX 124
8CX 126

0015 8CX 128
8CX12A

0016 8CX12C
8CX12E

607F
0018

401C
01F3

4Q1D
01F4

60FF
0012

801B
4000

Enter the OUTPUT mode.
The byte count is read from
location 10oO and the data bytes
starting at location 1001 are
transmitted. When the byte count
reaches 80 the output instruction
ends.

There must be at least one
instruction, that does not read or
write the HDLC chip after an
OUTPUT instruction, to allow the
CRC bytes and closing flag time
to be transmitted In this example
a NOP was used, but any non
HDLC instruction could be used.

Store a 7F in CR 1. This
instruction turns off the
transmitter and turns on the
receiver.

Read the IR register and
store it in location 01F3. This will
clear the status before the next use
of the HDLC chip.

Read the SR register and
store it in location 01F4.

Store a FF in the timer
limit register and enable it to run
(Timer = 512 micro).

Enter the INPUT mode.
Location 4OOO will be cleared to
accept the incoming byte count.
If no data is received the 10s will
wait here for 5 12 microsecond
before going on to instruction
#17. If any data byte is received
before a timeout, the timer will be
restarted. The 10s will stay in this

C-25

0017 8CX130
8CX132

0018 8CX134
8CX 136

0001 8CX200
8CX202

0002 8CX204
8CX206

0003 8CX208
8CX20A

6OOo
0012

2000
0348

4015
OlFO

6OOo
m

801B
lFOO

oO04 8CX2OC 2000
8CX2OE 0204

instruction until a closing flag is
received or the timer expires or in
the case of an infinite input
message the GPC terminates the
chain.

Disable the timer.

BRANCH to the next
instruction to be executed in this
chain at location 0348. (This is
an example of how bypassing
might be done. The next
executable instruction will be at
location 0348).

MOVE the current value of
time to location 01FO. (This could
be done to log the time that this
device was fust enabled)

Turn off the timer.

Enter the INPUT mode and
store the frame starting at location
1F00. In an IOS, the system will
hang at this instruction for a poll
to be won since there are no
unsolicited messages on the VO
network.

In an 10s there would be
only these two instructions. This
BRANCH allows the 10s to
return to unsolicited mode without
the need to restore pointers.

A possible way that a solicited chain could always end is the following. The last
instruction in the chain does a branch to a location that performs the desired chain

C-26

termination. The advantage of this is that the solicited chain pointer will always have a
known value in it whenever a chain has gone to completion.

nnnn xxxx 2000 This is the last instruction of the chain.
xxxx+2 OFFO It specifies BRANCH to OFFO.

8CXFFO 6084 This is an END CHAIN command
8CXFF2 001 1 It turns off the POLL and places the 10s in

the execute unsolicited mode. The solicited
chain pointer will contain the value OFF4,
which can be used to verify that the chain has
completed.

C-27

Report Documentation Page
I. Report No.

NASA CR- 18 1874
2. Government Accession No.

I
4. Title and Subtitle

Advanced Information Processing Systems: Input/Output
System Services

19. Security Classif. (of this report)

Unclassified

7. Authoris)

Thomas Masotto and Linda Alger

20. Security Classif. (of t

Unclassified

9. Performing Organization Name and Address

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Mail Station 3B

m e n q Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

MA 07119

5. Supplementary Notes
NASA Langley Technical Monitor: Felix L. Pitts

0 Fw@) 21. No. of pagas

193

3. Recipient’s Catalog No.

22. P h

5. Report Date

August 1989

6. Performing Organization Code

8. Performing Organization Repon No.

10. Work Unit No.

506-46-21-05

1 1 . Contract or Grant No.

NAS 1-1 8 5 6 5
13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

6. Abstract

The purpose of this report is to document the functional requirements and
detailed specifications for the Input/Output (I D) Systems Services of the
Advanced Information Processing System (AIPS) .
provided to outline the overall architecture and functional requirements of
the AIPS system.
as well as a detailed description of the AIPS fault tolerant network
architecture, while section 1.2 provides an introduction to the AIPS systems
software.
and detailed specifications of the I/O User Interface and Communications
Management modules of the I/o System Services, respectively. Section 4
illustrates the use of the I/O System Services, while Section 5 concludes with
a summary of results and suggestions for future work in this area.

This introductory section is

Section 1.1 gives a brief wentiew of the AIPS architecture

Sections 2 and 3 describe the functional requirements and design

18. Dstribution Statement
Unclassified - Unlimited

NASA FORM 1626 OCT 86

